Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT-Based Prediction of Bioconcentration Factors of Polychlorinated Biphenyls in Fish Species Using Atomic Descriptors
Corresponding Author(s) : Sangeeta Sahu
Asian Journal of Chemistry,
Vol. 29 No. 11 (2017): Vol 29 Issue 11
Abstract
Atomic charge and density calculated by DFT method at twelve sites of biphenyl skeleton of polychlorinated biphenyls has been used to predict their bioconcentration factors. For prediction of bioconcentration factor, the 3D modeling and geometry optimization of all the compounds have been performed on workspace program of CAChe pro software of Fujitsu using the B88-PW91 GGA energy function with the DZVP basis set. Bioconcentration factor model, derived from partial atomic charges (r2 = 0.917, r2CV = 0.879, s = 0.270) has better predicting power than the model derived from HOMO densities (r2 = 0.902, r2CV = 0.837, s = 0.307) and can be used to predict bioconcentration factors of a large number of related compounds within limited time without any difficulty. One can also use these DFT-based atomic parameters in developing new methodology for chemical degradation of polychlorinated biphenyls.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ecological Effects Test Guidelines: Fish BCF, EPA/712-C-96-127, US Environmental Protection Agency, Washington, DC (1996).
- Guidelines for the Identification of PCBs and Materials Containing PCBs, United Nations Environment Programme, First Issue, August (1999).
- S.E. Bysshe, eds.: W.J. Lyman, W.F. Reehl and D.H. Rosenblatt, Bioconcentration Factor in Aquatic Organisms, In: Handbook of Chemical Property Estimation Methods, McGraw Hill, New York (1982).
- G. Schüürmann and W. Klein, Chemosphere, 17, 1551 (1988); https://doi.org/10.1016/0045-6535(88)90207-X.
- I. Grabowska, Pol. J. Environ. Stud., 19, 7 (2010).
- V.K. Sahu and R.K. Singh, Clean-Soil Air Water, 37, 850 (2009); https://doi.org/10.1002/clen.200900170.
- R.F. Herrick, D.J. Lefkowitz and G.A. Weymouth, Environ. Health Perspect., 115, 173 (2006); https://doi.org/10.1289/ehp.9646.
- S.K. Sahu, P.Y. Ajmal, G.G. Pandit and V.D. Puranik, J. Hazard. Mater., 164, 1573 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.113.
- K. Senthilkumar, K. Kannan, A. Subramanian and S. Tanabe, Environ. Sci. Pollut. Res. Int., 8, 35 (2001); https://doi.org/10.1007/BF02987293.
- The Role of Bioaccumulation in Environmental Risk Assessment: The Aquatic Environment and Related Food Webs, Technical Report 67, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium (1996).
- B. Hope, S. Scatolini and E. Titus, Chemosphere, 36, 1247 (1998); https://doi.org/10.1016/S0045-6535(97)10045-5.
- T. Kunisue, M. Watanabe, A. Subramanian, A.M. Titenko and S. Tanabe, Arch. Environ. Contam. Toxicol., 45, 547 (2003); https://doi.org/10.1007/s00244-003-2213-8.
- G.M. Swanson, H.E. Ratcliffe and L.J. Fischer, Regul. Toxicol. Pharmacol., 21, 136 (1995); https://doi.org/10.1006/rtph.1995.1018.
- G. Schade and B. Heinzow, Sci. Total Environ., 215, 31 (1998); https://doi.org/10.1016/S0048-9697(98)00008-4.
- O. Faroon, D. Jones and C. De Rosa, Toxicol. Ind. Health, 16, 305 (2000); https://doi.org/10.1177/074823370001600708.
- G. Devanathan, A. Subramanian, M. Someya, A. Sudaryanto, T. Isobe, S. Takahashi, P. Chakraborty and S. Tanabe, Environ. Pollut., 157, 148 (2009); https://doi.org/10.1016/j.envpol.2008.07.011.
- G. Devanathan, T. Isobe, A. Subramanian, K.A. Asante, S. Natrajan, P. Palanlappan, S. Takahashi and S. Tanabe, eds.: M. Kawaguchi, K. Misaki, H. Sato, T. Yokokawa, T. Itai, T. M. Nguyen, J. Ono and S. Tanabe, Contamination Status of Polychlorinated Biphenyls and Brominated Flame Retardants in Environmental and Biota Samples from India, In: Interdisciplinary Studies on Environmental Chemistry−Environmental Pollution and Ecotoxicology, pp. 269–277 (2012).
- I. Cok, A. Bilgili, M. Ozdemir, H. Ozbek, N. Bilgili and S. Burgaz, Bull. Environ. Contam. Toxicol., 59, 577 (1997); https://doi.org/10.1007/s001289900518.
- C. Hansch and A. Leo, Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC (1995).
- A.R. Katritzky, M. Radzvilovits, S. Slavov, K. Kasemets, K. Tämm and M. Karelson, Toxicol. Environ. Chem., 92, 1233 (2010); https://doi.org/10.1080/02772240903306417.
- L.T. Qin, S.S. Liu, H.L. Liu and H.L. Ge, Chemosphere, 70, 1577 (2008); https://doi.org/10.1016/j.chemosphere.2007.08.009.
- C. Mori, H. Fukata, K. Sakurai, T. Jotaki, E. Todaka and Y. Saito, Chemosphere, 73, S235 (2008); https://doi.org/10.1016/j.chemosphere.2007.12.038.
- D.G. Wang, M. Yang, H.L. Jia, L. Zhou and Y.F. Li, Chemosphere, 73, 38 (2008); https://doi.org/10.1016/j.chemosphere.2008.05.055.
- T. Ivanciuc, O. Ivanciuc and D.J. Klein, Mol. Divers., 10, 133 (2006); https://doi.org/10.1007/s11030-005-9003-3.
- P. Gramatica and E. Papa, QSAR Comb. Sci., 24, 953 (2005); https://doi.org/10.1002/qsar.200530123.
- J.C. Dearden and N.M. Shinnawei, SAR QSAR Environ. Res., 15, 449 (2004); https://doi.org/10.1080/10629360412331297489.
- M.T. Sacan, S.S. Erdem, G.A. Ozpinar and I.A. Balcioglu, J. Chem. Inf. Comput. Sci., 44, 985 (2004); https://doi.org/10.1021/ci0342167.
- P. Gramatica and E. Papa, QSAR Comb. Sci., 22, 374 (2003); https://doi.org/10.1002/qsar.200390027.
- P.V. Khadikar, S. Singh, D. Mandloi, S. Joshi and A.V. Bajaj, Bioorg. Med. Chem., 11, 5045 (2003); https://doi.org/10.1016/j.bmc.2003.08.028.
- S. Tao, H. Hu, X. Lu, R.W. Dawson and F. Xu, Chemosphere, 41, 1563 (2000); https://doi.org/10.1016/S0045-6535(00)00049-7.
- J. Devillers, S. Bintein and D. Domine, Chemosphere, 33, 1047 (1996); https://doi.org/10.1016/0045-6535(96)00246-9.
- S. Bintein, J. Devillers and W. Karcher, SAR QSAR Environ. Res., 1, 29 (1993); https://doi.org/10.1080/10629369308028814.
- A. Sabljic, H. Guesten, J. Hermens and A. Opperhuizen, Environ. Sci. Technol., 27, 1394 (1993); https://doi.org/10.1021/es00044a015.
- R.P. Davies and A.J. Dobbs, Water Res., 18, 1253 (1984); https://doi.org/10.1016/0043-1354(84)90030-7.
- D. Mackay, Environ. Sci. Technol., 16, 274 (1982); https://doi.org/10.1021/es00099a008.
- M. Karelson, V.S. Lobanov and A.R. Katritzky, Chem. Rev., 96, 1027 (1996); https://doi.org/10.1021/cr950202r.
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
- P. Geerlings, F.D. Proft and J.M.L. Martin, ed.: S. Seminario, Recent Developments in Density Functional Theory (Theoretical and Computational Chemistry) Elsevier: Amsterdam (1996).
- K. Singhal, V.K. Sahu, P. Singh and P. Raj, Med. Chem. Res., 23, 1758 (2014); https://doi.org/10.1007/s00044-013-0752-8.
- A.R. Leach, Molecular Modelling. Principle and Applications, Pearson Education Limited, Harlow, edn 2 (2001).
- F.A. Pasha, H.K. Srivastava and P.P. Singh, Bioorg. Med. Chem., 13, 6823 (2005); https://doi.org/10.1016/j.bmc.2005.07.064.
- R.L. Mason, R.F. Gunst and J.T. Webster, Commun. Stat., 4, 277 (1975); https://doi.org/10.1080/03610917508548355.
- O.P. Agarwal, Polynuclear Aromatic Hydrocarbon in Chemistry of Organic Natural Product, Goel Publishing House, Delhi, India, vol. 1 (2002).
- G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002.
- R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
- E.B. de Melo, Ecotoxicol. Environ. Saf., 75, 213 (2012); https://doi.org/10.1016/j.ecoenv.2011.08.026.
References
Ecological Effects Test Guidelines: Fish BCF, EPA/712-C-96-127, US Environmental Protection Agency, Washington, DC (1996).
Guidelines for the Identification of PCBs and Materials Containing PCBs, United Nations Environment Programme, First Issue, August (1999).
S.E. Bysshe, eds.: W.J. Lyman, W.F. Reehl and D.H. Rosenblatt, Bioconcentration Factor in Aquatic Organisms, In: Handbook of Chemical Property Estimation Methods, McGraw Hill, New York (1982).
G. Schüürmann and W. Klein, Chemosphere, 17, 1551 (1988); https://doi.org/10.1016/0045-6535(88)90207-X.
I. Grabowska, Pol. J. Environ. Stud., 19, 7 (2010).
V.K. Sahu and R.K. Singh, Clean-Soil Air Water, 37, 850 (2009); https://doi.org/10.1002/clen.200900170.
R.F. Herrick, D.J. Lefkowitz and G.A. Weymouth, Environ. Health Perspect., 115, 173 (2006); https://doi.org/10.1289/ehp.9646.
S.K. Sahu, P.Y. Ajmal, G.G. Pandit and V.D. Puranik, J. Hazard. Mater., 164, 1573 (2009); https://doi.org/10.1016/j.jhazmat.2008.08.113.
K. Senthilkumar, K. Kannan, A. Subramanian and S. Tanabe, Environ. Sci. Pollut. Res. Int., 8, 35 (2001); https://doi.org/10.1007/BF02987293.
The Role of Bioaccumulation in Environmental Risk Assessment: The Aquatic Environment and Related Food Webs, Technical Report 67, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium (1996).
B. Hope, S. Scatolini and E. Titus, Chemosphere, 36, 1247 (1998); https://doi.org/10.1016/S0045-6535(97)10045-5.
T. Kunisue, M. Watanabe, A. Subramanian, A.M. Titenko and S. Tanabe, Arch. Environ. Contam. Toxicol., 45, 547 (2003); https://doi.org/10.1007/s00244-003-2213-8.
G.M. Swanson, H.E. Ratcliffe and L.J. Fischer, Regul. Toxicol. Pharmacol., 21, 136 (1995); https://doi.org/10.1006/rtph.1995.1018.
G. Schade and B. Heinzow, Sci. Total Environ., 215, 31 (1998); https://doi.org/10.1016/S0048-9697(98)00008-4.
O. Faroon, D. Jones and C. De Rosa, Toxicol. Ind. Health, 16, 305 (2000); https://doi.org/10.1177/074823370001600708.
G. Devanathan, A. Subramanian, M. Someya, A. Sudaryanto, T. Isobe, S. Takahashi, P. Chakraborty and S. Tanabe, Environ. Pollut., 157, 148 (2009); https://doi.org/10.1016/j.envpol.2008.07.011.
G. Devanathan, T. Isobe, A. Subramanian, K.A. Asante, S. Natrajan, P. Palanlappan, S. Takahashi and S. Tanabe, eds.: M. Kawaguchi, K. Misaki, H. Sato, T. Yokokawa, T. Itai, T. M. Nguyen, J. Ono and S. Tanabe, Contamination Status of Polychlorinated Biphenyls and Brominated Flame Retardants in Environmental and Biota Samples from India, In: Interdisciplinary Studies on Environmental Chemistry−Environmental Pollution and Ecotoxicology, pp. 269–277 (2012).
I. Cok, A. Bilgili, M. Ozdemir, H. Ozbek, N. Bilgili and S. Burgaz, Bull. Environ. Contam. Toxicol., 59, 577 (1997); https://doi.org/10.1007/s001289900518.
C. Hansch and A. Leo, Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC (1995).
A.R. Katritzky, M. Radzvilovits, S. Slavov, K. Kasemets, K. Tämm and M. Karelson, Toxicol. Environ. Chem., 92, 1233 (2010); https://doi.org/10.1080/02772240903306417.
L.T. Qin, S.S. Liu, H.L. Liu and H.L. Ge, Chemosphere, 70, 1577 (2008); https://doi.org/10.1016/j.chemosphere.2007.08.009.
C. Mori, H. Fukata, K. Sakurai, T. Jotaki, E. Todaka and Y. Saito, Chemosphere, 73, S235 (2008); https://doi.org/10.1016/j.chemosphere.2007.12.038.
D.G. Wang, M. Yang, H.L. Jia, L. Zhou and Y.F. Li, Chemosphere, 73, 38 (2008); https://doi.org/10.1016/j.chemosphere.2008.05.055.
T. Ivanciuc, O. Ivanciuc and D.J. Klein, Mol. Divers., 10, 133 (2006); https://doi.org/10.1007/s11030-005-9003-3.
P. Gramatica and E. Papa, QSAR Comb. Sci., 24, 953 (2005); https://doi.org/10.1002/qsar.200530123.
J.C. Dearden and N.M. Shinnawei, SAR QSAR Environ. Res., 15, 449 (2004); https://doi.org/10.1080/10629360412331297489.
M.T. Sacan, S.S. Erdem, G.A. Ozpinar and I.A. Balcioglu, J. Chem. Inf. Comput. Sci., 44, 985 (2004); https://doi.org/10.1021/ci0342167.
P. Gramatica and E. Papa, QSAR Comb. Sci., 22, 374 (2003); https://doi.org/10.1002/qsar.200390027.
P.V. Khadikar, S. Singh, D. Mandloi, S. Joshi and A.V. Bajaj, Bioorg. Med. Chem., 11, 5045 (2003); https://doi.org/10.1016/j.bmc.2003.08.028.
S. Tao, H. Hu, X. Lu, R.W. Dawson and F. Xu, Chemosphere, 41, 1563 (2000); https://doi.org/10.1016/S0045-6535(00)00049-7.
J. Devillers, S. Bintein and D. Domine, Chemosphere, 33, 1047 (1996); https://doi.org/10.1016/0045-6535(96)00246-9.
S. Bintein, J. Devillers and W. Karcher, SAR QSAR Environ. Res., 1, 29 (1993); https://doi.org/10.1080/10629369308028814.
A. Sabljic, H. Guesten, J. Hermens and A. Opperhuizen, Environ. Sci. Technol., 27, 1394 (1993); https://doi.org/10.1021/es00044a015.
R.P. Davies and A.J. Dobbs, Water Res., 18, 1253 (1984); https://doi.org/10.1016/0043-1354(84)90030-7.
D. Mackay, Environ. Sci. Technol., 16, 274 (1982); https://doi.org/10.1021/es00099a008.
M. Karelson, V.S. Lobanov and A.R. Katritzky, Chem. Rev., 96, 1027 (1996); https://doi.org/10.1021/cr950202r.
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
P. Geerlings, F.D. Proft and J.M.L. Martin, ed.: S. Seminario, Recent Developments in Density Functional Theory (Theoretical and Computational Chemistry) Elsevier: Amsterdam (1996).
K. Singhal, V.K. Sahu, P. Singh and P. Raj, Med. Chem. Res., 23, 1758 (2014); https://doi.org/10.1007/s00044-013-0752-8.
A.R. Leach, Molecular Modelling. Principle and Applications, Pearson Education Limited, Harlow, edn 2 (2001).
F.A. Pasha, H.K. Srivastava and P.P. Singh, Bioorg. Med. Chem., 13, 6823 (2005); https://doi.org/10.1016/j.bmc.2005.07.064.
R.L. Mason, R.F. Gunst and J.T. Webster, Commun. Stat., 4, 277 (1975); https://doi.org/10.1080/03610917508548355.
O.P. Agarwal, Polynuclear Aromatic Hydrocarbon in Chemistry of Organic Natural Product, Goel Publishing House, Delhi, India, vol. 1 (2002).
G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002.
R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
E.B. de Melo, Ecotoxicol. Environ. Saf., 75, 213 (2012); https://doi.org/10.1016/j.ecoenv.2011.08.026.