Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Various Techniques to Optimize the Quality of Schottky Contacts on ZnO Thin Films: A Short Review
Corresponding Author(s) : Sumit Vyas
Asian Journal of Chemistry,
Vol. 29 No. 11 (2017): Vol 29 Issue 11
Abstract
Zinc oxide is a promising material for fabrication of electronic and optoelectronic devices. ZnO based Schottky diode is an important device that can be used for variety of applications. For a high quality Schottky contact on ZnO, it is essential that the quality of the ZnO film should be very good. In this paper, various techniques that can be used to improve the quality of ZnO thin film and hence the quality of Schottky contacts on ZnO have been reviewed. Techniques like surface treatments of ZnO, annealing of the film before and after deposition of the contacts, use of buffer layer and proper selection of deposition method greatly affects the quality of Schottky contact on ZnO. These methods are reported by various research groups that are discussed in this paper.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.A. Mead, Phys. Lett., 18, 218 (1965); https://doi.org/10.1016/0031-9163(65)90295-7.
- L. Brillson and Y. Lu, J. Appl. Phys., 109, 121301 (2011); https://doi.org/10.1063/1.3581173.
- H.L. Mosbacker, S. El Hage, M. Gonzalez, S.A. Ringel, M. Hetzer, D.C. Look, G. Cantwell, J. Zhang, J.J. Song and L.J. Brillson, J. Vac. Sci. Technol. B, 25, 1405 (2007); https://doi.org/10.1116/1.2756543.
- B. Angadi, H.C. Park, H.W. Choi, J.W. Choi and W.K. Choi, J. Phys. D Appl. Phys., 40, 1422 (2007); https://doi.org/10.1088/0022-3727/40/5/016.
- M. Oh, D. Hwang, J. Lim, Y. Choi and S. Park, Appl. Phys. Lett., 91, 042109 (2007); https://doi.org/10.1063/1.2764436.
- H. Lee, C. Su, B. Wu, W. Xu, Y. Lin and M. Chern, Jpn. J. Appl. Phys., 50, 088004 (2011).
- A. Nakamura and J. Temmyo, J. Appl. Phys., 109, 093517 (2011); https://doi.org/10.1063/1.3582143.
- R.-H. Chang, K.-C. Yang, T.-H. Chen, L.-W. Lai, T.-H. Lee, S.-L. Yao and D.-S. Liu, J. Nanomater., Article ID 560542 (2013); https://doi.org/10.1155/2013/560542.
- C. Tsiarapas, D. Girginoudi and N. Georgoulas, Semicond. Sci. Technol., 29, 045012 (2014); https://doi.org/10.1088/0268-1242/29/4/045012.
- X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue, H.Z. Zhuang and B.Y. Man, Mater. Chem. Phys., 101, 285 (2007); https://doi.org/10.1016/j.matchemphys.2006.05.005.
- O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B.R. Cuenya and H. Heinrich, Appl. Surf. Sci., 256, 1895 (2010); https://doi.org/10.1016/j.apsusc.2009.10.032.
- X. Jiang-Ping, S. Shao-Bo, L. Lan, Z. Xiao-Song, W. Ya-Xin and C. Xi- Ming, Chin. Phys. Lett., 27, 047803 (2010);
- X.-K. Li, Q.-S. Li, D.-C. Liang and Y.-D. Xu, Optoelectron. Lett., 5, 216 (2009); https://doi.org/10.1007/s11801-009-8216-6.
- W. Mtangi, F.D. Auret, W.E. Meyer, M.J. Legodi and P.J. Janse-van-Rensburg, J. Appl. Phys., 111, 094504 (2012); https://doi.org/10.1063/1.4709728.
- J.L. Gu, Y.F. Lu, J. Zhang, L.X. Chen and Z.Z. Ye, J. Alloys Comp., 556, 62 (2013); https://doi.org/10.1016/j.jallcom.2012.12.104.
- K.G. Saw, S.S. Tneh, G.L. Tan, F.K. Yam, S.S. Ng and Z. Hassan, PLoS One, 9, e86544 (2014); https://doi.org/10.1371/journal.pone.0086544.
- D. Somvanshi and S. Jit, IEEE Trans. Electron Dev., 34, 1238 (2013); https://doi.org/10.1109/LED.2013.2278738.
- A.B. Yadav, K. Singh, A. Pandey and S. Jit, Superlattices Microstruct., 71, 250 (2014); https://doi.org/10.1016/j.spmi.2014.03.043.
- H.S. Al-Salman and M.J. Abdullah, Chin Shu Hsueh Pao, 28, 230 (2015); https://doi.org/10.1007/s40195-014-0189-1.
- J. Hwang, C. Kung and Y. Lin, IEEE Trans. NanoTechnol., 12, 35 (2013); https://doi.org/10.1109/TNANO.2012.2226188.
- D. Somvanshi and S. Jit, IEEE Electron Device Lett., 35, 945 (2014); https://doi.org/10.1109/LED.2014.2334473.
- A.A. Aal, S.A. Mahmoud and A.K. Aboul-Gheit, Nanoscale Res. Lett., 4, 627 (2009); https://doi.org/10.1007/s11671-009-9290-1.
- S. Singh and P. Chakrabarti, Superlattices Microstruct., 64, 283 (2013); https://doi.org/10.1016/j.spmi.2013.09.031.
- S. Vyas, P. Giri, S. Singh and P. Chakrabarti, 44, 3401 (2015); https://doi.org/10.1007/s11664-015-3861-y
References
C.A. Mead, Phys. Lett., 18, 218 (1965); https://doi.org/10.1016/0031-9163(65)90295-7.
L. Brillson and Y. Lu, J. Appl. Phys., 109, 121301 (2011); https://doi.org/10.1063/1.3581173.
H.L. Mosbacker, S. El Hage, M. Gonzalez, S.A. Ringel, M. Hetzer, D.C. Look, G. Cantwell, J. Zhang, J.J. Song and L.J. Brillson, J. Vac. Sci. Technol. B, 25, 1405 (2007); https://doi.org/10.1116/1.2756543.
B. Angadi, H.C. Park, H.W. Choi, J.W. Choi and W.K. Choi, J. Phys. D Appl. Phys., 40, 1422 (2007); https://doi.org/10.1088/0022-3727/40/5/016.
M. Oh, D. Hwang, J. Lim, Y. Choi and S. Park, Appl. Phys. Lett., 91, 042109 (2007); https://doi.org/10.1063/1.2764436.
H. Lee, C. Su, B. Wu, W. Xu, Y. Lin and M. Chern, Jpn. J. Appl. Phys., 50, 088004 (2011).
A. Nakamura and J. Temmyo, J. Appl. Phys., 109, 093517 (2011); https://doi.org/10.1063/1.3582143.
R.-H. Chang, K.-C. Yang, T.-H. Chen, L.-W. Lai, T.-H. Lee, S.-L. Yao and D.-S. Liu, J. Nanomater., Article ID 560542 (2013); https://doi.org/10.1155/2013/560542.
C. Tsiarapas, D. Girginoudi and N. Georgoulas, Semicond. Sci. Technol., 29, 045012 (2014); https://doi.org/10.1088/0268-1242/29/4/045012.
X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue, H.Z. Zhuang and B.Y. Man, Mater. Chem. Phys., 101, 285 (2007); https://doi.org/10.1016/j.matchemphys.2006.05.005.
O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B.R. Cuenya and H. Heinrich, Appl. Surf. Sci., 256, 1895 (2010); https://doi.org/10.1016/j.apsusc.2009.10.032.
X. Jiang-Ping, S. Shao-Bo, L. Lan, Z. Xiao-Song, W. Ya-Xin and C. Xi- Ming, Chin. Phys. Lett., 27, 047803 (2010);
X.-K. Li, Q.-S. Li, D.-C. Liang and Y.-D. Xu, Optoelectron. Lett., 5, 216 (2009); https://doi.org/10.1007/s11801-009-8216-6.
W. Mtangi, F.D. Auret, W.E. Meyer, M.J. Legodi and P.J. Janse-van-Rensburg, J. Appl. Phys., 111, 094504 (2012); https://doi.org/10.1063/1.4709728.
J.L. Gu, Y.F. Lu, J. Zhang, L.X. Chen and Z.Z. Ye, J. Alloys Comp., 556, 62 (2013); https://doi.org/10.1016/j.jallcom.2012.12.104.
K.G. Saw, S.S. Tneh, G.L. Tan, F.K. Yam, S.S. Ng and Z. Hassan, PLoS One, 9, e86544 (2014); https://doi.org/10.1371/journal.pone.0086544.
D. Somvanshi and S. Jit, IEEE Trans. Electron Dev., 34, 1238 (2013); https://doi.org/10.1109/LED.2013.2278738.
A.B. Yadav, K. Singh, A. Pandey and S. Jit, Superlattices Microstruct., 71, 250 (2014); https://doi.org/10.1016/j.spmi.2014.03.043.
H.S. Al-Salman and M.J. Abdullah, Chin Shu Hsueh Pao, 28, 230 (2015); https://doi.org/10.1007/s40195-014-0189-1.
J. Hwang, C. Kung and Y. Lin, IEEE Trans. NanoTechnol., 12, 35 (2013); https://doi.org/10.1109/TNANO.2012.2226188.
D. Somvanshi and S. Jit, IEEE Electron Device Lett., 35, 945 (2014); https://doi.org/10.1109/LED.2014.2334473.
A.A. Aal, S.A. Mahmoud and A.K. Aboul-Gheit, Nanoscale Res. Lett., 4, 627 (2009); https://doi.org/10.1007/s11671-009-9290-1.
S. Singh and P. Chakrabarti, Superlattices Microstruct., 64, 283 (2013); https://doi.org/10.1016/j.spmi.2013.09.031.
S. Vyas, P. Giri, S. Singh and P. Chakrabarti, 44, 3401 (2015); https://doi.org/10.1007/s11664-015-3861-y