Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Molecular Docking, Thermal Degradation Studies and Biological Screening of N-{[2-(Pyridin-4-ylcarbonyl)hydrazinyl]carbonothioyl}furan-2-carboxamide and its Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) Complexes
Corresponding Author(s) : P. Parameshwara Naik
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
N-{[2-(Pyridin-4-ylcarbonyl)hydrazinyl]carbonothioyl}furan-2-carboxamide and its complexes with Ni(II), Co(II), Cu(II), Zn(II) and Mn(II) ions have been synthesized. The structure of the synthesized compounds was elucidated by elemental analysis, conductivity measurements, UV-visible, FT-IR, 1H NMR, powder XRD and thermal analysis studies. Most of metal complexes have exhibit thermal degradation between 80-750 °C and the powder X-rays diffraction data suggest that all the synthesized metal complexes were in nano crystalline phase. The computational molecular docking has been studied using Hex molecular modeling package version 8.2. The three dimensional structure of E. coli MurBenzyme (PDB code 2MBR) was used in microbial activity. The metal complexes showed comparable E total values with the standard drug tetracycline. The antioxidant and antimicrobial activity of prepared compounds indicate agreeable results versus bacterial strains three Gram-positive bacteria; S. aureus, S. pyogenes and P. acnes and three Gram-negative bacteria; E. coli, K. terrigena and K. pneumonia. The antifungal activity gave good results against fungal strains C. albicans, C. neoformans and Trichosporon.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Casas, M.S. Garcia-Tasende and J. Sordo, Coord. Chem. Rev., 209, 197 (2000); https://doi.org/10.1016/S0010-8545(00)00363-5.
- H. Beraldo and D. Gambino, Mini Rev. Med. Chem., 4, 31 (2004); https://doi.org/10.2174/1389557043487484.
- P.K. Mascharak, Coord. Chem. Rev., 225, 201 (2002); https://doi.org/10.1016/S0010-8545(01)00413-1.
- P.H. Wang, J.G. Keck, E.J. Lien and M.M.C. Lai, J. Med. Chem., 33, 608 (1990); https://doi.org/10.1021/jm00164a023.
- J. Lopez, S. Liang and X.R. Bu, Tetrahedron Lett., 39, 4199 (1998); https://doi.org/10.1016/S0040-4039(98)00784-9.
- D.X. West, S.B. Padhye, P.B. Sonawane and R.C. Chikte, Struct. Bonding, 76, 1 (1991); https://doi.org/10.1007/3-540-53499-7_1.
- N. Raman, Y.P. Raja and A. Kulandaisamy, Proc. Ind. Acad. Sci. Chem. Sci., 113, 183 (2001); https://doi.org/10.1007/BF02704068.
- A. Nagajothi, A. Kiruthika, S. Chitra and K. Parameswari, Int. J. Res. Pharm. Biomed. Sci., 3, 1768 (2012).
- A.T. Colak, M. Tumer and S. Serin, Transition Met. Chem., 25, 200 (2000); https://doi.org/10.1023/A:1007030418949.
- M.G. Abd El-Wahed, S.M. Metwally, M. El-Gamel and S.M. Abd El Haleem, Bull. Korean Chem. Soc., 22, 663 (2001).
- S.A. Galal, K.H. Hegab, A.S. Kassab, M.L. Rodriguez, S.M. Kerwin, A.M.A. El Khamry and H.I. El Diwani, Eur. J. Med. Chem., 44, 1500 (2009); https://doi.org/10.1016/j.ejmech.2008.07.013.
- N.K. Singh and S.B. Singh, Indian J. Chem., 40A, 1071 (2001).
- P.H. Shivayogi, B.H.M. Mruthyunjayaswamy and G.P. Muralidhar, Indian J. Chem., 16B, 789 (1978).
- J.S. Biradar and B. Sharanbasappa, Green Chem. Lett. Rev., 2, 237 (2009); https://doi.org/10.1080/17518250903393890.
- A.V. Lakshmi, N.R. Sangeetha and S. Pal, Indian J. Chem., 36A, 844 (1997).
- R.S. Baligar and V.K. Revankar, J. Serb. Chem. Soc., 71, 1301 (2006).
- K. Abe, K. Matsufuji, M. Ohba and H. Okawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f.
- R. Malhotra, S. Kumar, H.R.S. Jyoti and K.S. Dhindsa, Indian J. Chem., 39A, 421 (2000).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern Pvt. Ltd., New Delhi, edn 3 (1972).
- (a) I.M. Procter, R.J. Hathaway and P. Nicholls, J. Chem. Soc. A, 1678 (1968); https://doi.org/10.1039/j19680001678. (b) K. Gielzak-Koæwin and W. Wojciechowski, Transition Met. Chem., 21, 312 (1996); https://doi.org/10.1007/BF00139025.
- (a) K.C. Satpathy, B.B. Jal and R. Mishra, Transition Met. Chem., 9, 8 (1984); https://doi.org/10.1007/BF00620718. (b) A.C. Fabretti, G. Peyronel and G.C. Franchini, Inorg. Chim. Acta, 35, 49 (1979); https://doi.org/10.1016/S0020-1693(00)93416-9.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, edn 2, pp. 487 (1984).
- C.J. Ballhausen, An Introduction to Ligand Field Theory, McGraw Hill, New York (1962).
- G. Krishnamurthy, J. Chem., Article ID 265107 (2013); https://doi.org/10.1155/2013/265107.
- S. Chandra, S. Raizada and S. Sadwal, J. Pharm. Sci. Res., 5, 4718 (2014); http://dx.doi.org/10.13040/IJPSR.0975-8232.5(11).4718-23.
- K. Kong, H. Zhang, R. Ma, Y. Chen, H. Chu and Y. Zhao, J. Rare Earths, 31, 32 (2013); https://doi.org/10.1016/S1002-0721(12)60230-0.
- N.J. Miller and C.A. Rice-Evans, Free Radic. Res., 26, 195 (1997); https://doi.org/10.3109/10715769709097799.
- Y.S. Ravikumar, K.M. Mahadevan, M.N. Kumaraswamy, V.P. Vaidya, H. Manjunatha, V. Kumar and N.D. Satyanarayana, Environ. Toxicol. Pharmacol., 26, 142 (2008); https://doi.org/10.1016/j.etap.2008.03.001.
- A.K. Elansary, H.H. Kadry, E.M. Ahmed and A.S.M. Sonousi, Med. Chem. Res., 21, 3327 (2012); https://doi.org/10.1007/s00044-011-9846-3.
- D. Mengin-Lecreulx, B. Flouret and J. van Heijenoort, J. Bacteriol., 151, 1109 (1982).
- B. Sreekanth, G. Krishnamurthy, H.S.B. Naik and T.K. Vishnuvardhan, Nucleosides Nucleotides Nucleic Acids, 31, 1 (2012); https://doi.org/10.1080/15257770.2011.636415.
- M. Bhat and G.K. Nagaraja, RSC Adv., 6, 59375 (2016); https://doi.org/10.1039/C6RA06093E.
- B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Pub. Co., Notre dame, IN (1978).
References
J.S. Casas, M.S. Garcia-Tasende and J. Sordo, Coord. Chem. Rev., 209, 197 (2000); https://doi.org/10.1016/S0010-8545(00)00363-5.
H. Beraldo and D. Gambino, Mini Rev. Med. Chem., 4, 31 (2004); https://doi.org/10.2174/1389557043487484.
P.K. Mascharak, Coord. Chem. Rev., 225, 201 (2002); https://doi.org/10.1016/S0010-8545(01)00413-1.
P.H. Wang, J.G. Keck, E.J. Lien and M.M.C. Lai, J. Med. Chem., 33, 608 (1990); https://doi.org/10.1021/jm00164a023.
J. Lopez, S. Liang and X.R. Bu, Tetrahedron Lett., 39, 4199 (1998); https://doi.org/10.1016/S0040-4039(98)00784-9.
D.X. West, S.B. Padhye, P.B. Sonawane and R.C. Chikte, Struct. Bonding, 76, 1 (1991); https://doi.org/10.1007/3-540-53499-7_1.
N. Raman, Y.P. Raja and A. Kulandaisamy, Proc. Ind. Acad. Sci. Chem. Sci., 113, 183 (2001); https://doi.org/10.1007/BF02704068.
A. Nagajothi, A. Kiruthika, S. Chitra and K. Parameswari, Int. J. Res. Pharm. Biomed. Sci., 3, 1768 (2012).
A.T. Colak, M. Tumer and S. Serin, Transition Met. Chem., 25, 200 (2000); https://doi.org/10.1023/A:1007030418949.
M.G. Abd El-Wahed, S.M. Metwally, M. El-Gamel and S.M. Abd El Haleem, Bull. Korean Chem. Soc., 22, 663 (2001).
S.A. Galal, K.H. Hegab, A.S. Kassab, M.L. Rodriguez, S.M. Kerwin, A.M.A. El Khamry and H.I. El Diwani, Eur. J. Med. Chem., 44, 1500 (2009); https://doi.org/10.1016/j.ejmech.2008.07.013.
N.K. Singh and S.B. Singh, Indian J. Chem., 40A, 1071 (2001).
P.H. Shivayogi, B.H.M. Mruthyunjayaswamy and G.P. Muralidhar, Indian J. Chem., 16B, 789 (1978).
J.S. Biradar and B. Sharanbasappa, Green Chem. Lett. Rev., 2, 237 (2009); https://doi.org/10.1080/17518250903393890.
A.V. Lakshmi, N.R. Sangeetha and S. Pal, Indian J. Chem., 36A, 844 (1997).
R.S. Baligar and V.K. Revankar, J. Serb. Chem. Soc., 71, 1301 (2006).
K. Abe, K. Matsufuji, M. Ohba and H. Okawa, Inorg. Chem., 41, 4461 (2002); https://doi.org/10.1021/ic020002f.
R. Malhotra, S. Kumar, H.R.S. Jyoti and K.S. Dhindsa, Indian J. Chem., 39A, 421 (2000).
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern Pvt. Ltd., New Delhi, edn 3 (1972).
(a) I.M. Procter, R.J. Hathaway and P. Nicholls, J. Chem. Soc. A, 1678 (1968); https://doi.org/10.1039/j19680001678. (b) K. Gielzak-Koæwin and W. Wojciechowski, Transition Met. Chem., 21, 312 (1996); https://doi.org/10.1007/BF00139025.
(a) K.C. Satpathy, B.B. Jal and R. Mishra, Transition Met. Chem., 9, 8 (1984); https://doi.org/10.1007/BF00620718. (b) A.C. Fabretti, G. Peyronel and G.C. Franchini, Inorg. Chim. Acta, 35, 49 (1979); https://doi.org/10.1016/S0020-1693(00)93416-9.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, edn 2, pp. 487 (1984).
C.J. Ballhausen, An Introduction to Ligand Field Theory, McGraw Hill, New York (1962).
G. Krishnamurthy, J. Chem., Article ID 265107 (2013); https://doi.org/10.1155/2013/265107.
S. Chandra, S. Raizada and S. Sadwal, J. Pharm. Sci. Res., 5, 4718 (2014); http://dx.doi.org/10.13040/IJPSR.0975-8232.5(11).4718-23.
K. Kong, H. Zhang, R. Ma, Y. Chen, H. Chu and Y. Zhao, J. Rare Earths, 31, 32 (2013); https://doi.org/10.1016/S1002-0721(12)60230-0.
N.J. Miller and C.A. Rice-Evans, Free Radic. Res., 26, 195 (1997); https://doi.org/10.3109/10715769709097799.
Y.S. Ravikumar, K.M. Mahadevan, M.N. Kumaraswamy, V.P. Vaidya, H. Manjunatha, V. Kumar and N.D. Satyanarayana, Environ. Toxicol. Pharmacol., 26, 142 (2008); https://doi.org/10.1016/j.etap.2008.03.001.
A.K. Elansary, H.H. Kadry, E.M. Ahmed and A.S.M. Sonousi, Med. Chem. Res., 21, 3327 (2012); https://doi.org/10.1007/s00044-011-9846-3.
D. Mengin-Lecreulx, B. Flouret and J. van Heijenoort, J. Bacteriol., 151, 1109 (1982).
B. Sreekanth, G. Krishnamurthy, H.S.B. Naik and T.K. Vishnuvardhan, Nucleosides Nucleotides Nucleic Acids, 31, 1 (2012); https://doi.org/10.1080/15257770.2011.636415.
M. Bhat and G.K. Nagaraja, RSC Adv., 6, 59375 (2016); https://doi.org/10.1039/C6RA06093E.
B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Pub. Co., Notre dame, IN (1978).