Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultraviolet Absorption Spectra, Solvent Effect and Non-Linear Optical Properties of Tetrahydroxy-1,4-quinone Hydrate by Hartee-Fock and Density Functional Theory
Corresponding Author(s) : Sarvendra Kumar
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
In present work, the ultraviolet absorption spectrum of tetrahydroxy-1,4-quinone hydrate (TH,1,4-QH) has been carried out experimentally (in water, methanol dimethyl sulfoxide, acetonitrile and chloroform) and theoretically in the range 3500-2300 cm-1 in the solution phase. Predicted electronic absorption spectra from time dependent density functional theory (TD-DFT) calculation have been analyzed and compared with the experimental UV-visible spectrum. The effects of hydroxy group substituent in benzoquinone ring have been analyzed. The electronic properties such as excitation energy, wavelength corresponding to absorption maxima (lmax), oscillator strength (f), HOMO and LUMO energies are calculated by time-dependent density functional theory (TD-DFT) using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) as basis sets. The electric dipole moment (μ), a (polarizability) and b (first hyperpolarizability) have been computed to evaluate the NLO (non-linear optical) response of the investigated compound by Hartree-Fock (HF) and density functional theory (DFT) with B3LYP basis sets. Mulliken atomic charges of the atoms are calculated by DFT (B3LYP). In addition natural bond orbital (NBO) analysis has been done using TD-DFT with B3LYP/6-311++G(d,p) basis sets.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, John Wiley, New York (2004).
- P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International, New Delhi, India (2005).
- E.A. Braude, UV and Visible Light Absorption in Determination of Organic Structures by Physical Methods, Academic Press, New York (1955).
- Y.R. Sharma, Elementary Organic Spectroscopy, Principle and Chemical Applications, S. Chand and Company Ltd., New Delhi (1998).
- R.N. Medhi, R. Barman, K.C. Medhi and S.S. Jois, Spectrochim. Acta A Mol. Biomol. Spectrosc., 54, 623 (1998); https://doi.org/10.1016/S1386-1425(97)00250-3.
- K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 49, 1024 (1993); https://doi.org/10.1016/0584-8539(93)80225-Y.
- K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 47, 1061 (1991); https://doi.org/10.1016/0584-8539(91)80036-I.
- K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 46, 1333 (1990); https://doi.org/10.1016/0584-8539(90)80138-O.
- D. Shoba, S. Periandi, S. Boomadevi, S. Ramalingam and E. Fereyduni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 438 (2014); https://doi.org/10.1016/j.saa.2013.09.023.
- M. Arivazhagan and D.A. Rexalin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 107, 347 (2013); https://doi.org/10.1016/j.saa.2013.01.029.
- R. Mathammal, N. Sudha, L.G. Prasad, N. Ganga and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 740 (2015); https://doi.org/10.1016/j.saa.2014.08.099.
- B.S. Yadav, R. Kumar, M.K. Singh and J. Teotia, Int. Trans. Appl. Sci., 1, 581 (2009).
- J.T. Vinita, Seema and M.K.Yadav, Int. Trans. Appl. Sci., 6, 205 (2014).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- M.J. Frisch et al., Gaussian 09 program, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- M. Kasha, Discuss. Faraday Soc., 9, 14 (1950); https://doi.org/10.11039/DF9500900014.
- J.H. Rush and H. Sponer, J. Chem. Phys., 20, 1847 (1952); https://doi.org/10.1063/1.1700327.
- K. Ram, B.R. Pandey and R.S. Tripathi, J. Chim. Phys., 74, 1150 (1977); https://doi.org/10.1051/jcp/1977741150.
- I.L. Finar, Organic Chemistry, Longmans, London, edn 5, vol. 2 (1975).
- S. Stephenson, J. Chem. Phys., 22, 1077 (1954); https://doi.org/10.1063/1.1740268.
- L. Goodman and R.W. Harrell, J. Chem. Phys., 30, 1131 (1959); https://doi.org/10.1063/1.1730147.
- N. Mataga and T. Kubota, Molecular Introductions and Electronic Spectra, Marcel Dekkar Inc., New York (1970).
- J.L. Reed, J. Phys. Chem. A, 101, 7396 (1997); https://doi.org/10.1021/jp9711050.
- C.W. Kwon, A. Poquet, S. Mornet, G. Campet, M.H. Delville, M. Treguer and J. Portier, Mater. Lett., 51, 402 (2001); https://doi.org/10.1016/S0167-577X(01)00328-7.
- R. Kumar, S. Kumar and J. Teotia, J. Adv. Phys., 8, 2122 (2015).
- R. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340.
- R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
- R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588.
- I.G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam (1976).
- M.G. Papadopoulos, A.J. Sadlej, J. Sadley and J. Leszczynski, Non-Linear Optical Properties of Matter, In: Challenges and Advances in Computational Chemistry and Physics, Springer, vol. 1 (2006).
- D.S. Chemla, Rep. Prog. Phys., 43, 1191 (1980); https://doi.org/10.1088/0034-4885/43/10/001.
- R. Rajendran, T.H. Freeda, U.L. Kalasekar and R.N. Peruma, Adv. Mater. Phys. Chem., 1, 39 (2011); https://doi.org/10.4236/ampc.2011.12007.
- J. Teotia, S. Kumar, Surbhi, R. Kumar and M.K. Yadav, Asian J. Chem., 28, 2204 (2016); https://doi.org/10.14233/ajchem.2016.19928.
- S. Kumar, Surbhi and M.K.Yadav, eds.: B.M.K. Prasad, K.K. Singh, N. Ruhil, K. Singh and R. O’Kennedy, UV-Vis Studies and Quantum Analysis of 2,3,5,6-Tetramethyl-1,4-benzoquinone using HF and DFT Method, In: Communication and Computing Systems, Proceeding of Taylor and Francis Group, CRC Press, Boca Raton, FL, pp. 713-719 (2017); https://doi.org/10.1201/9781315364094-128.
References
R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, John Wiley, New York (2004).
P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International, New Delhi, India (2005).
E.A. Braude, UV and Visible Light Absorption in Determination of Organic Structures by Physical Methods, Academic Press, New York (1955).
Y.R. Sharma, Elementary Organic Spectroscopy, Principle and Chemical Applications, S. Chand and Company Ltd., New Delhi (1998).
R.N. Medhi, R. Barman, K.C. Medhi and S.S. Jois, Spectrochim. Acta A Mol. Biomol. Spectrosc., 54, 623 (1998); https://doi.org/10.1016/S1386-1425(97)00250-3.
K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 49, 1024 (1993); https://doi.org/10.1016/0584-8539(93)80225-Y.
K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 47, 1061 (1991); https://doi.org/10.1016/0584-8539(91)80036-I.
K.C. Medhi and R.N. Medhi, Spectrochim. Acta A Mol. Spectrosc., 46, 1333 (1990); https://doi.org/10.1016/0584-8539(90)80138-O.
D. Shoba, S. Periandi, S. Boomadevi, S. Ramalingam and E. Fereyduni, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 438 (2014); https://doi.org/10.1016/j.saa.2013.09.023.
M. Arivazhagan and D.A. Rexalin, Spectrochim. Acta A Mol. Biomol. Spectrosc., 107, 347 (2013); https://doi.org/10.1016/j.saa.2013.01.029.
R. Mathammal, N. Sudha, L.G. Prasad, N. Ganga and V. Krishnakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 740 (2015); https://doi.org/10.1016/j.saa.2014.08.099.
B.S. Yadav, R. Kumar, M.K. Singh and J. Teotia, Int. Trans. Appl. Sci., 1, 581 (2009).
J.T. Vinita, Seema and M.K.Yadav, Int. Trans. Appl. Sci., 6, 205 (2014).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
M.J. Frisch et al., Gaussian 09 program, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
M. Kasha, Discuss. Faraday Soc., 9, 14 (1950); https://doi.org/10.11039/DF9500900014.
J.H. Rush and H. Sponer, J. Chem. Phys., 20, 1847 (1952); https://doi.org/10.1063/1.1700327.
K. Ram, B.R. Pandey and R.S. Tripathi, J. Chim. Phys., 74, 1150 (1977); https://doi.org/10.1051/jcp/1977741150.
I.L. Finar, Organic Chemistry, Longmans, London, edn 5, vol. 2 (1975).
S. Stephenson, J. Chem. Phys., 22, 1077 (1954); https://doi.org/10.1063/1.1740268.
L. Goodman and R.W. Harrell, J. Chem. Phys., 30, 1131 (1959); https://doi.org/10.1063/1.1730147.
N. Mataga and T. Kubota, Molecular Introductions and Electronic Spectra, Marcel Dekkar Inc., New York (1970).
J.L. Reed, J. Phys. Chem. A, 101, 7396 (1997); https://doi.org/10.1021/jp9711050.
C.W. Kwon, A. Poquet, S. Mornet, G. Campet, M.H. Delville, M. Treguer and J. Portier, Mater. Lett., 51, 402 (2001); https://doi.org/10.1016/S0167-577X(01)00328-7.
R. Kumar, S. Kumar and J. Teotia, J. Adv. Phys., 8, 2122 (2015).
R. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340.
R.G. Parr, L.V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588.
I.G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam (1976).
M.G. Papadopoulos, A.J. Sadlej, J. Sadley and J. Leszczynski, Non-Linear Optical Properties of Matter, In: Challenges and Advances in Computational Chemistry and Physics, Springer, vol. 1 (2006).
D.S. Chemla, Rep. Prog. Phys., 43, 1191 (1980); https://doi.org/10.1088/0034-4885/43/10/001.
R. Rajendran, T.H. Freeda, U.L. Kalasekar and R.N. Peruma, Adv. Mater. Phys. Chem., 1, 39 (2011); https://doi.org/10.4236/ampc.2011.12007.
J. Teotia, S. Kumar, Surbhi, R. Kumar and M.K. Yadav, Asian J. Chem., 28, 2204 (2016); https://doi.org/10.14233/ajchem.2016.19928.
S. Kumar, Surbhi and M.K.Yadav, eds.: B.M.K. Prasad, K.K. Singh, N. Ruhil, K. Singh and R. O’Kennedy, UV-Vis Studies and Quantum Analysis of 2,3,5,6-Tetramethyl-1,4-benzoquinone using HF and DFT Method, In: Communication and Computing Systems, Proceeding of Taylor and Francis Group, CRC Press, Boca Raton, FL, pp. 713-719 (2017); https://doi.org/10.1201/9781315364094-128.