Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Syntheses of 1,5-Benzothiazepines: Part 48: Single Pot Syntheses and Antimicrobial Studies of 8-Substituted 4-(2,4/2,5-disubstituted aryl)-2,3-dihydro-1,5-benzothiazepine-2-carboxylic Acids
Corresponding Author(s) : Seema Pant
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
Two substituted acrylic acids, b-(2,4-dimethylbenzoyl) acrylic acid and b-(2,5-diisopropylbenzoyl) acrylic acid were reacted with six 5-substituted 2-aminobenzenethiols, in dry ethanol containing trifluroacetic acid to obtain ten new compounds, 8-substituted 4-(2,4-dimethylphenyl/2,5-diisopropylphenyl)-2,3-dihydro-1,5-benzothiazepine-2-carboxylic acids in 53-63 % yields. The products were characterized on the basis of micro analytical data and spectral analysis comprising IR, 1H NMR and mass studies. All the synthesized compounds have been screened for their antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus and Gram-negative bacteria, Enterobacter cloacae, Klebsiella aerogenes and fungus, Candida albicans with respective reference compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Juranic, L.J. Sterovic, B. Darkulic, T. Stanojkovic, S. Radulovic and I. Juranic, J. Serb. Chem. Soc., 64, 505 (1999).
- L.M. Taylor, J. Andrew Aquilina, J.F. Jamie and R.J.W. Truscott, Exp. Eye Res., 75, 165 (2002); https://doi.org/10.1006/exer.2002.2012.
- A. Volonterio, C. Ramirez de Arellano and M. Zanda, J. Org. Chem., 70, 2161 (2005); https://doi.org/10.1021/jo0480848.
- T. Kohler, G. Friedrich, and P. Nuhn, Agents Action, 32, 70 (1991); https://doi.org/10.1007/BF01983315.
- F.K. Kirchner, J.H. Bailey and C.J. Cavallito, J. Am. Chem. Soc., 71, 1210 (1949); https://doi.org/10.1021/ja01172a020.
- H. Takayanagi, Y. Kitano, T. Yano, H. Umeki and H. Hara, Can. Patent Appl. 2,114,333 (1994); Chem. Abstr., 122, 1042 (1995).
- S.J. Gharpure and S.R.B. Reddy, Org. Lett., 11, 2519 (2009); https://doi.org/10.1021/ol900721q.
- A.K. Atta and T. Pathak, Eur. J. Org. Chem., 6810 (2010); https://doi.org/10.1002/ejoc.201000941.
- M.M. El-Mobayed, A.M. Hassein and W.M. Mohlhel, J. Heterocycl. Chem., 47, 534 (2010); https://doi.org/10.1002/jhet.357.
- S. Pant, Avinash and M. Yadav, Indian J. Heterocycl. Chem., 23, 381 (2014).
- P. Sharma and S. Pant, Int. J. Chem. Sci. Appl., 5, 7 (2014).
References
Z. Juranic, L.J. Sterovic, B. Darkulic, T. Stanojkovic, S. Radulovic and I. Juranic, J. Serb. Chem. Soc., 64, 505 (1999).
L.M. Taylor, J. Andrew Aquilina, J.F. Jamie and R.J.W. Truscott, Exp. Eye Res., 75, 165 (2002); https://doi.org/10.1006/exer.2002.2012.
A. Volonterio, C. Ramirez de Arellano and M. Zanda, J. Org. Chem., 70, 2161 (2005); https://doi.org/10.1021/jo0480848.
T. Kohler, G. Friedrich, and P. Nuhn, Agents Action, 32, 70 (1991); https://doi.org/10.1007/BF01983315.
F.K. Kirchner, J.H. Bailey and C.J. Cavallito, J. Am. Chem. Soc., 71, 1210 (1949); https://doi.org/10.1021/ja01172a020.
H. Takayanagi, Y. Kitano, T. Yano, H. Umeki and H. Hara, Can. Patent Appl. 2,114,333 (1994); Chem. Abstr., 122, 1042 (1995).
S.J. Gharpure and S.R.B. Reddy, Org. Lett., 11, 2519 (2009); https://doi.org/10.1021/ol900721q.
A.K. Atta and T. Pathak, Eur. J. Org. Chem., 6810 (2010); https://doi.org/10.1002/ejoc.201000941.
M.M. El-Mobayed, A.M. Hassein and W.M. Mohlhel, J. Heterocycl. Chem., 47, 534 (2010); https://doi.org/10.1002/jhet.357.
S. Pant, Avinash and M. Yadav, Indian J. Heterocycl. Chem., 23, 381 (2014).
P. Sharma and S. Pant, Int. J. Chem. Sci. Appl., 5, 7 (2014).