Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermal Stability on Morphology and Crystal Structures of Hydrothermally Synthesized Titanate Nanotubes and Their Photocatalytic Activity
Corresponding Author(s) : Mohd Hasmizam Razali
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
Thermal stability on morphology and crystal structure of hydrothermally synthesized titanates nanotubes was investigated. Morphology study by FESEM and TEM revealed that the synthesized titanate nanotubes retained up to 500 °C before converted into nanowires and nanorods at 600 and 700 °C, respectively. The crystal structure of sodium trititanate nanotubes remained unchanged upon thermal treatment from 300 to 500 °C. However at 600 and 700 °C, the interlayer titanate in sodium trititanate samples undergo dimerization like process leading to the formation of an intermediate nanostructured hexatitanate, just before transformed into the corresponding anatase TiO2 crystals. Titanate nanotubes either trititanate or hexatitanate show low photocatalytic activity for methyl orange degradation due to their inter-layered crystal structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Zhang, Y. Huang, W. Jia, Y. Cai, X. Wang, Y. Guo, D. Jia, Z. Sun and Z. Guo, Electrochim. Acta, 210, 935 (2016); https://doi.org/10.1016/j.electacta.2016.06.017.
- L. Zhao, J. Yu, J. Fan, P. Zhai and S. Wang, Electrochem. Commun., 11, 2052 (2009); https://doi.org/10.1016/j.elecom.2009.08.050.
- X. Badema and K. Cho, J. Ind. Eng. Chem., 29, 32 (2015); https://doi.org/10.1016/j.jiec.2015.03.027.
- N.M. Dos Santos, J.M. Rocha, J.M.E. Matos, O.P. Ferreira, J.M. Filho, B.C. Viana and A.C. Oliveira, Appl. Catal. A, 454, 74 (2013); https://doi.org/10.1016/j.apcata.2012.12.035.
- J. Yu and H. Yu, Mater. Chem. Phys., 100, 507 (2006); https://doi.org/10.1016/j.matchemphys.2006.02.002.
- D. Emadzadeh, W.J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura and A.F. Ismail, Chem. Eng. J., 281, 243 (2015); https://doi.org/10.1016/j.cej.2015.06.035.
- B. Barrocas, C.D. Nunes, M.L. Carvalho and O.C. Monteiro, Appl. Surf. Sci., 385, 18 (2016); https://doi.org/10.1016/j.apsusc.2016.05.080.
- E.M. Neville, J.M.D. MacElroy, K.R. Thampi and J.A. Sullivan, J. Photochem. Photobiol. Chem., 267, 17 (2013); https://doi.org/10.1016/j.jphotochem.2013.06.008.
- D.U. Hong, C.-H. Han, S.H. Park, I.-J. Kim, J. Gwak, S.-D. Han and H.J. Kim, Curr. Appl. Phys., 9, 172 (2009); https://doi.org/10.1016/j.cap.2008.01.010.
- D. Liu, T. Liu, C. Lv and W. Zeng, Mater Sci: Mater Electron, 23, 576 (2012); https://doi.org/10.1007/s10854-011-0443-5.
- H. Li, X. Shen, Y. Liu, L. Wang, J. Lei and J. Zhang, J. Alloys Compd., 687, 927 (2016); https://doi.org/10.1016/j.jallcom.2016.05.320.
- K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications, New Jersey, USA (2001).
- Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer and D.Y. Song, Adv. Funct. Mater., 15, 1310 (2005); https://doi.org/10.1002/adfm.200400353.
- S. Ribbens, V. Meynen, G.V. Tendeloo, X. Ke, M. Mertens, B.U.W. Maes, P. Cool and E.F. Vansant, Micropor. Mesopor. Mater., 114, 401 (2008); https://doi.org/10.1016/j.micromeso.2008.01.028.
- E. Morgado Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim and A.S. Araujo, Mater. Res. Bull., 42, 1748 (2007); https://doi.org/10.1016/j.materresbull.2006.11.020.
- M. Mojica, F. Méndez and J. Alonso, Molecules, 18, 2243 (2013); https://doi.org/10.3390/molecules18022243.
- M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee and S.J. Kim, Catal. Today, 131, 3 (2008); https://doi.org/10.1016/j.cattod.2007.10.015.
- O.V. Yakubovich and V.V. Kireev, Crystallogr. Rep., 48, 24 (2003); https://doi.org/10.1134/1.1541737.
- A.L. Sauvet, S. Baliteau, C. Lopez and P. Fabry, J. Solid State Chem., 177, 4508 (2004); https://doi.org/10.1016/j.jssc.2004.09.008.
- S.-H. Byeon, S.-O. Lee and H. Kim, J. Solid State Chem., 130, 110 (1997); https://doi.org/10.1006/jssc.1997.7286.
- R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando, J. Phys. Chem. B, 109, 6210 (2005); https://doi.org/10.1021/jp044282r.
- O.P. Ferreira, A.G. Souza Filho, J. Mendes Filho and O.L. Alves, J. Braz. Chem. Soc., 17, 393 (2006); https://doi.org/10.1590/S0103-50532006000200025.
- V. Rodríguez-González, S. Obregón-Alfaro, L.M. Lozano-Sánchez and S.-W. Lee, J. Mol. Catal. A, 353– 354, 163 (2012); https://doi.org/10.1016/j.molcata.2011.11.020.
References
P. Zhang, Y. Huang, W. Jia, Y. Cai, X. Wang, Y. Guo, D. Jia, Z. Sun and Z. Guo, Electrochim. Acta, 210, 935 (2016); https://doi.org/10.1016/j.electacta.2016.06.017.
L. Zhao, J. Yu, J. Fan, P. Zhai and S. Wang, Electrochem. Commun., 11, 2052 (2009); https://doi.org/10.1016/j.elecom.2009.08.050.
X. Badema and K. Cho, J. Ind. Eng. Chem., 29, 32 (2015); https://doi.org/10.1016/j.jiec.2015.03.027.
N.M. Dos Santos, J.M. Rocha, J.M.E. Matos, O.P. Ferreira, J.M. Filho, B.C. Viana and A.C. Oliveira, Appl. Catal. A, 454, 74 (2013); https://doi.org/10.1016/j.apcata.2012.12.035.
J. Yu and H. Yu, Mater. Chem. Phys., 100, 507 (2006); https://doi.org/10.1016/j.matchemphys.2006.02.002.
D. Emadzadeh, W.J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura and A.F. Ismail, Chem. Eng. J., 281, 243 (2015); https://doi.org/10.1016/j.cej.2015.06.035.
B. Barrocas, C.D. Nunes, M.L. Carvalho and O.C. Monteiro, Appl. Surf. Sci., 385, 18 (2016); https://doi.org/10.1016/j.apsusc.2016.05.080.
E.M. Neville, J.M.D. MacElroy, K.R. Thampi and J.A. Sullivan, J. Photochem. Photobiol. Chem., 267, 17 (2013); https://doi.org/10.1016/j.jphotochem.2013.06.008.
D.U. Hong, C.-H. Han, S.H. Park, I.-J. Kim, J. Gwak, S.-D. Han and H.J. Kim, Curr. Appl. Phys., 9, 172 (2009); https://doi.org/10.1016/j.cap.2008.01.010.
D. Liu, T. Liu, C. Lv and W. Zeng, Mater Sci: Mater Electron, 23, 576 (2012); https://doi.org/10.1007/s10854-011-0443-5.
H. Li, X. Shen, Y. Liu, L. Wang, J. Lei and J. Zhang, J. Alloys Compd., 687, 927 (2016); https://doi.org/10.1016/j.jallcom.2016.05.320.
K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications, New Jersey, USA (2001).
Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer and D.Y. Song, Adv. Funct. Mater., 15, 1310 (2005); https://doi.org/10.1002/adfm.200400353.
S. Ribbens, V. Meynen, G.V. Tendeloo, X. Ke, M. Mertens, B.U.W. Maes, P. Cool and E.F. Vansant, Micropor. Mesopor. Mater., 114, 401 (2008); https://doi.org/10.1016/j.micromeso.2008.01.028.
E. Morgado Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim and A.S. Araujo, Mater. Res. Bull., 42, 1748 (2007); https://doi.org/10.1016/j.materresbull.2006.11.020.
M. Mojica, F. Méndez and J. Alonso, Molecules, 18, 2243 (2013); https://doi.org/10.3390/molecules18022243.
M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee and S.J. Kim, Catal. Today, 131, 3 (2008); https://doi.org/10.1016/j.cattod.2007.10.015.
O.V. Yakubovich and V.V. Kireev, Crystallogr. Rep., 48, 24 (2003); https://doi.org/10.1134/1.1541737.
A.L. Sauvet, S. Baliteau, C. Lopez and P. Fabry, J. Solid State Chem., 177, 4508 (2004); https://doi.org/10.1016/j.jssc.2004.09.008.
S.-H. Byeon, S.-O. Lee and H. Kim, J. Solid State Chem., 130, 110 (1997); https://doi.org/10.1006/jssc.1997.7286.
R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando, J. Phys. Chem. B, 109, 6210 (2005); https://doi.org/10.1021/jp044282r.
O.P. Ferreira, A.G. Souza Filho, J. Mendes Filho and O.L. Alves, J. Braz. Chem. Soc., 17, 393 (2006); https://doi.org/10.1590/S0103-50532006000200025.
V. Rodríguez-González, S. Obregón-Alfaro, L.M. Lozano-Sánchez and S.-W. Lee, J. Mol. Catal. A, 353– 354, 163 (2012); https://doi.org/10.1016/j.molcata.2011.11.020.