Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Reduction of Nitroanisaldehyde at Zinc Cathode with Surface Morphology and Biological Activity
Corresponding Author(s) : S.A. Srikanta
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
Crystalline and sphere like morphologies of smaller molecules have many applications. Particle size determination is essentially and important while working with nanomaterials. The information on many physical properties including the size, morphology, surface texture, roughness and chemical composition of materials is the important area of research. Moreover, advanced manipulation of the samples during the SEM experiments can provide key information about the morphology of the crystals at the micro and nanometer scale. The electrochemical reduction of nitro aromatic compound to its amine derivative is of great importance in studying the conductivity and the surface morphology of the cathode. The measurement of the variation of current and electrode potential with time during the electrolysis is also the important area of research. The particle size variation in the reduction product of a nitro aromatic compound increases the biological activity may be due to their particle size. The study of biological activity of the organic molecule before and after electrolysis is an interesting subject in the pharmaceutical industry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. Roy, D.J. Bindl and M.S. Arnold, J. Phys. Chem. Lett., 3, 873 (2012); https://doi.org/10.1021/jz201559g.
- C.X. Yuan, Y.R. Fan, T. Zhang, H.X. Guo, J.X. Zhang, Y.L. Wang, D.L. Shan and X.Q. Lu, Biosens. Bioelectron., 58, 85 (2014); https://doi.org/10.1016/j.bios.2014.01.041.
- M. Weßling and H.J. Schäfer, Beilstein J. Org. Chem., 11, 1163 (2015); https://doi.org/10.3762/bjoc.11.131.
- H.-C. Zhou, J.R. Long and O.M. Yaghi, Chem. Rev., 112, 673 (2012); https://doi.org/10.1021/cr300014x.
- M.A. Matthews, Pure Appl. Chem., 73, 1305 (2001); https://doi.org/10.1351/pac200173081305.
- E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jörissen, L. Kröner, B. Lewall and H. Pütter, Chemosphere, 43, 63 (2001); https://doi.org/10.1016/S0045-6535(00)00325-8.
- D. Nematollahi and E. Tammari, J. Org. Chem., 70, 7769 (2005); https://doi.org/10.1021/jo0508301.
- Y.-F. Ran, C. Blum, S.-X. Liu, L. Sanguinet, E. Levillain and S. Decurtins, Tetrahedron, 67, 1623 (2011); https://doi.org/10.1016/j.tet.2011.01.011.
- T. Shono, Tetrahedron, 40, 811 (1984); https://doi.org/10.1016/S0040-4020(01)91472-3.
- B.R. Thorata, M. Mandewalea, S. Shelke, P. Kamat, R.G. Atrama, M. Bhalerao, R. Yamgara., J. Chem. Pharm. Res., 4, 14 (2012).
- P. Jara-Ulloa, P. Cañete-Rosales, L.J. Núñez-Vergara and J.A. Squella, J. Braz. Chem. Soc., 22, 1271 (2011); https://doi.org/10.1590/S0103-50532011000700012.
- G.B. Jacobson, R. Shinde, R.L. McCullough, N.J. Cheng, A. Creasman, A. Beyene, R.P. Hickerson, C. Quan, C. Turner, R.L. Kaspar, C.H. Contag and R.N. Zare, J. Pharm. Sci., 99, 2750 (2010); https://doi.org/10.1002/jps.22035.
- S.R. Reddy, K.C. Mohan and N.Y. Sreedhar, Int. J. Sci. Eng. Res., 2, 1 (2011).
- B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma and R. Vasquez-Medrano, Green Chem., 12, 2099 (2010); https://doi.org/10.1039/c0gc00382d.
- S. Rekha, R. Thirunakaran, A. Sivashanmugam and S. Gopukumar, Bull. Electrochem. (India), 16, 220 (2000).
- M.A. Albrecht, C.W. Evans and C.L. Raston, Green Chem., 8, 417 (2006); https://doi.org/10.1039/b517131h.
- R. Joerger, T. Klaus and C.G. Granqvist, Adv. Mater., 12, 407 (2000); https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AIDADMA407>3.0.CO;2-O.
- S.S. Shankar, A. Ahmad, R. Pasricha and M. Sastry, J. Mater. Chem., 13, 1822 (2003); https://doi.org/10.1039/b303808b.
- R. Ghorbani-Vaghei and S.M. Malaekehpoor, Tetrahedron Lett., 53, 4751 (2012); https://doi.org/10.1016/j.tetlet.2012.06.125.
- P. Selvam, S.U. Sonavane, S.K. Mohapatra and R.V. Jayaram, Tetrahedron Lett., 45, 3071 (2004); https://doi.org/10.1016/j.tetlet.2004.02.098.
References
S.S. Roy, D.J. Bindl and M.S. Arnold, J. Phys. Chem. Lett., 3, 873 (2012); https://doi.org/10.1021/jz201559g.
C.X. Yuan, Y.R. Fan, T. Zhang, H.X. Guo, J.X. Zhang, Y.L. Wang, D.L. Shan and X.Q. Lu, Biosens. Bioelectron., 58, 85 (2014); https://doi.org/10.1016/j.bios.2014.01.041.
M. Weßling and H.J. Schäfer, Beilstein J. Org. Chem., 11, 1163 (2015); https://doi.org/10.3762/bjoc.11.131.
H.-C. Zhou, J.R. Long and O.M. Yaghi, Chem. Rev., 112, 673 (2012); https://doi.org/10.1021/cr300014x.
M.A. Matthews, Pure Appl. Chem., 73, 1305 (2001); https://doi.org/10.1351/pac200173081305.
E. Steckhan, T. Arns, W.R. Heineman, G. Hilt, D. Hoormann, J. Jörissen, L. Kröner, B. Lewall and H. Pütter, Chemosphere, 43, 63 (2001); https://doi.org/10.1016/S0045-6535(00)00325-8.
D. Nematollahi and E. Tammari, J. Org. Chem., 70, 7769 (2005); https://doi.org/10.1021/jo0508301.
Y.-F. Ran, C. Blum, S.-X. Liu, L. Sanguinet, E. Levillain and S. Decurtins, Tetrahedron, 67, 1623 (2011); https://doi.org/10.1016/j.tet.2011.01.011.
T. Shono, Tetrahedron, 40, 811 (1984); https://doi.org/10.1016/S0040-4020(01)91472-3.
B.R. Thorata, M. Mandewalea, S. Shelke, P. Kamat, R.G. Atrama, M. Bhalerao, R. Yamgara., J. Chem. Pharm. Res., 4, 14 (2012).
P. Jara-Ulloa, P. Cañete-Rosales, L.J. Núñez-Vergara and J.A. Squella, J. Braz. Chem. Soc., 22, 1271 (2011); https://doi.org/10.1590/S0103-50532011000700012.
G.B. Jacobson, R. Shinde, R.L. McCullough, N.J. Cheng, A. Creasman, A. Beyene, R.P. Hickerson, C. Quan, C. Turner, R.L. Kaspar, C.H. Contag and R.N. Zare, J. Pharm. Sci., 99, 2750 (2010); https://doi.org/10.1002/jps.22035.
S.R. Reddy, K.C. Mohan and N.Y. Sreedhar, Int. J. Sci. Eng. Res., 2, 1 (2011).
B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma and R. Vasquez-Medrano, Green Chem., 12, 2099 (2010); https://doi.org/10.1039/c0gc00382d.
S. Rekha, R. Thirunakaran, A. Sivashanmugam and S. Gopukumar, Bull. Electrochem. (India), 16, 220 (2000).
M.A. Albrecht, C.W. Evans and C.L. Raston, Green Chem., 8, 417 (2006); https://doi.org/10.1039/b517131h.
R. Joerger, T. Klaus and C.G. Granqvist, Adv. Mater., 12, 407 (2000); https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AIDADMA407>3.0.CO;2-O.
S.S. Shankar, A. Ahmad, R. Pasricha and M. Sastry, J. Mater. Chem., 13, 1822 (2003); https://doi.org/10.1039/b303808b.
R. Ghorbani-Vaghei and S.M. Malaekehpoor, Tetrahedron Lett., 53, 4751 (2012); https://doi.org/10.1016/j.tetlet.2012.06.125.
P. Selvam, S.U. Sonavane, S.K. Mohapatra and R.V. Jayaram, Tetrahedron Lett., 45, 3071 (2004); https://doi.org/10.1016/j.tetlet.2004.02.098.