Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper Metallic Powder Effect for Expanded Graphite Plate for Thermal Conductivity
Corresponding Author(s) : Won-Chun Oh
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
In this study, the copper metallic powder effect for expanded graphite plate was considered to thermal conductivity. The samples were evaluated by various techniques such as scanning electron microscopy (SEM), wear rate, compressive strength, shore hardness, thermal conductivity and heat conduction. The achieved results expected not only to expand the applications of carbon materials but also to popularize new concept concrete flooring and concrete interior products that can maximize energy efficiency using low power as well as the new industry to respond to future changes in the investment policies around the world to take advantage of the expanded graphite material.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.B. Afeni and S.K. Osasan, Mining Sci. Technol. (China), 19, 420 (2009); https://doi.org/10.1016/S1674-5264(09)60078-8.
- N. Careddu and G. Siotto, Resour. Policy, 36, 304 (2011); https://doi.org/10.1016/j.resourpol.2011.07.002.
- J.T. Alvarez, I.D. Alvarez and S.T. Lougedo, WIT Transac. Ecol. Environ., 116, 85 (2008); https://doi.org/10.2495/AIR080101.
- E.C. Cromley, Mater. History Rev., 44, 8 (1996).
- C. Meyer, S. Baxter and W. Jin, Alkali-Aggregate Reaction in Concrete with Waste Glass as Aggregate, In: Proceedings of 4th Materials Engineering Conference: Materials For The New Millennium. Reston, VA, pp. 1388–1397 (1996).
- C. Meyer and S. Baxter, Use of Recycled Glass and Fly Ash for Precast Concrete, Rep. NYSERDA 98-18 (4292-IABR-IA-96) to New York State Energy Research and Development Authority, Columbia University, New York, USA (1998).
- C. Polley, S.M. Cramer and R.V. Cruz, J. Mater. Civ. Eng., 10, 210 (1998); https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(210).
- Z.P. Bazant, G. Zi and C. Meyer, J. Eng. Mech., 126, 226 (2000); https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226).
- E.A. Byars, B. Morales-Hernandez and H.Y. Zhu, Concrete, 38, 41 (2004).
- I.B. Topcu and M. Canbaz, Cement Concr. Res., 34, 267 (2004); https://doi.org/10.1016/j.cemconres.2003.07.003.
- C.H. Chen, R. Huang, J.K. Wu and C.C. Yang, Cement Concr. Res., 36, 449 (2006); https://doi.org/10.1016/j.cemconres.2005.12.010.
- S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak and A.K. Geim, Phys. Rev. Lett., 100, 016602 (2008); https://doi.org/10.1103/PhysRevLett.100.016602.
- Z.S. Wu, G.M. Zhou, L.C. Yin, W.C. Ren, F. Li and H.M. Cheng, Nano Energy, 1, 107 (2012); https://doi.org/10.1016/j.nanoen.2011.11.001.
- S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Ri Kim, Y. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132.
- S. Wu, X. Liu, Q. Ye and N. Li, Trans. Nonferr. Met. Soc. China, 16, 512 (2006); https://doi.org/10.1016/S1003-6326(06)60246-X.
- Y. Geng, Q. Zheng and J.-K. Kim, J. Nanosci. Nanotechnol., 11, 1084 (2011); https://doi.org/10.1166/jnn.2011.3063.
References
T.B. Afeni and S.K. Osasan, Mining Sci. Technol. (China), 19, 420 (2009); https://doi.org/10.1016/S1674-5264(09)60078-8.
N. Careddu and G. Siotto, Resour. Policy, 36, 304 (2011); https://doi.org/10.1016/j.resourpol.2011.07.002.
J.T. Alvarez, I.D. Alvarez and S.T. Lougedo, WIT Transac. Ecol. Environ., 116, 85 (2008); https://doi.org/10.2495/AIR080101.
E.C. Cromley, Mater. History Rev., 44, 8 (1996).
C. Meyer, S. Baxter and W. Jin, Alkali-Aggregate Reaction in Concrete with Waste Glass as Aggregate, In: Proceedings of 4th Materials Engineering Conference: Materials For The New Millennium. Reston, VA, pp. 1388–1397 (1996).
C. Meyer and S. Baxter, Use of Recycled Glass and Fly Ash for Precast Concrete, Rep. NYSERDA 98-18 (4292-IABR-IA-96) to New York State Energy Research and Development Authority, Columbia University, New York, USA (1998).
C. Polley, S.M. Cramer and R.V. Cruz, J. Mater. Civ. Eng., 10, 210 (1998); https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(210).
Z.P. Bazant, G. Zi and C. Meyer, J. Eng. Mech., 126, 226 (2000); https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(226).
E.A. Byars, B. Morales-Hernandez and H.Y. Zhu, Concrete, 38, 41 (2004).
I.B. Topcu and M. Canbaz, Cement Concr. Res., 34, 267 (2004); https://doi.org/10.1016/j.cemconres.2003.07.003.
C.H. Chen, R. Huang, J.K. Wu and C.C. Yang, Cement Concr. Res., 36, 449 (2006); https://doi.org/10.1016/j.cemconres.2005.12.010.
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak and A.K. Geim, Phys. Rev. Lett., 100, 016602 (2008); https://doi.org/10.1103/PhysRevLett.100.016602.
Z.S. Wu, G.M. Zhou, L.C. Yin, W.C. Ren, F. Li and H.M. Cheng, Nano Energy, 1, 107 (2012); https://doi.org/10.1016/j.nanoen.2011.11.001.
S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Ri Kim, Y. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010); https://doi.org/10.1038/nnano.2010.132.
S. Wu, X. Liu, Q. Ye and N. Li, Trans. Nonferr. Met. Soc. China, 16, 512 (2006); https://doi.org/10.1016/S1003-6326(06)60246-X.
Y. Geng, Q. Zheng and J.-K. Kim, J. Nanosci. Nanotechnol., 11, 1084 (2011); https://doi.org/10.1166/jnn.2011.3063.