Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dielectric Anomalies of BaTi1-xFexO3 Ceramics for x = 0.0 to 0.6 of Fe Doping Concentration
Corresponding Author(s) : N. Gouitaa
Asian Journal of Chemistry,
Vol. 29 No. 10 (2017): Vol 29 Issue 10
Abstract
The BaTi1-xFexO3 ceramics (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were prepared by the solid state reaction method. The effect of iron substitution on structural and dielectric properties of BaTiO3 ceramic was studied. These compounds are found to crystallize in the mixture of tetragonal and hexagonal phases for x £ 0.3 and only hexagonal phase for x > 0.3. Raman spectra indicate that when iron content increases, the intensity of Raman peaks of the tetragonal phase decreases and hexagonal phase grows, which confirm the X-ray results. The dielectric properties of BaTi1-xFexO3 ceramics as function of frequency are studied and showed a relaxation phenomena for pure barium and titanium (BT) (x = 0.0) which is displaced to the higher frequencies accompanied with a decrease in dielectric constant when x increase. The evolution of dielectric permittivity as function of temperature shows a phase transition temperature at Tc = 135 °C for BT and a clear shifting of this temperature to the higher temperature for BaTi1-xFexO3 ceramics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Hou, Z. Zhou, X. Ye, Q. Zhang, L. Ma and C. Zhen, Phys. Procedia, 32, 498 (2012); https://doi.org/10.1016/j.phpro.2012.03.593.
- X.K. Wei, Y.T. Su, Y. Sui, Z.X. Zhou, Y. Yao, C.Q. Jin and R.C. Yu, J.Appl. Phys., 102, 242910 (2013); https://doi.org/10.1063/1.4811699.
- R. Maier and J.L. Cohn, J. Appl. Phys., 92, 5429 (2002); https://doi.org/10.1063/1.1510591.
- A. Rajamani, G.F. Dionne, D. Bono and C.A. Ross, J. Appl. Phys., 98, 063907 (2005); https://doi.org/10.1063/1.2060945.
- H. Liu, B. Cao and C. O’Connor, J. Appl. Phys., 109, 07B516 (2011); https://doi.org/10.1063/1.3556768.
- F. Lin, D. Jiang, X. Ma and W. Shi, J. Magn. Magn. Mater., 320, 691 (2008); https://doi.org/10.1016/j.jmmm.2007.08.008.
- S.Y. Qiu, W. Li, Y. Liu, G.H. Liu, Y.Q. Wu and N. Chen, Trans. Nonferr. Met. Soc. China, 20, 1911 (2010); https://doi.org/10.1016/S1003-6326(09)60394-0.
- X.K. Wei, Q.H. Zhang, F.Y. Li, C.Q. Jin and R.C. Yu, J. Alloys Comp., 508, 486 (2010); https://doi.org/10.1016/j.jallcom.2010.08.099.
- C.F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta, W.R. Kellogg and G. Wu, Nano Energy, 13, 423 (2015); https://doi.org/10.1016/j.nanoen.2015.03.005.
- T.A. Vanderah, J.M. Loezos and R.S. Roth, J. Solid State Chem., 121, 38 (1996); https://doi.org/10.1006/jssc.1996.0006.
- P.P. Khirade, S.D. Birajdar, A.V. Raut and K.M. Jadhav, Ceram. Int., 42, 12441 (2016); https://doi.org/10.1016/j.ceramint.2016.05.021.
- N.V. Dang, N.T. Dung, P.T. Phong and I. Lee, Physica B, 457, 103 (2015); https://doi.org/10.1016/j.physb.2014.09.046.
- F. Aziz, P. Pandey, M. Chandra, A. Khare, D.S. Rana and K.R. Mavani, J. Magn. Magn. Mater., 356, 98 (2014); https://doi.org/10.1016/j.jmmm.2013.12.037.
- W.H. Zhang, L. Chen, Y.T. Tao, W.H. Zhang, J. Chen and J.X. Zhang, Physica B, 406, 4630 (2011); https://doi.org/10.1016/j.physb.2011.09.046.
- G. Murugesan, R. Nithya and S. Kalainathan, Int. J. ChemTech Res., 6, 1633 (2014).
- A. Elbasset, Ph.D. Thesis, Synthèse et caractérisation des matériaux céramiques de BaTiO3 purs et dopés au strontium et au zirconium, Université Sidi Mohamed Ben Abdellah, Fez, Morroco (2014).
- B. Deka, S. Ravi, A. Perumal and D. Pamu, Physica B, 448, 204 (2014); https://doi.org/10.1016/j.physb.2014.03.069.
- I.N. Apostolova, A.T. Apostolov, S.G. Bahoosh and J.M. Wesselinowa, J. Appl. Phys., 113, 203904 (2013); https://doi.org/10.1063/1.4807412.
- B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du and Z.G. Liu, Phys. Rev. B, 79, 134109 (2009); https://doi.org/10.1103/PhysRevB.79.134109.
- D.P. Dutta, M. Roy, N. Maiti and A.K. Tyagi, Phys. Chem. Chem. Phys., 18, 9758 (2016); https://doi.org/10.1039/C5CP07736B.
References
D. Hou, Z. Zhou, X. Ye, Q. Zhang, L. Ma and C. Zhen, Phys. Procedia, 32, 498 (2012); https://doi.org/10.1016/j.phpro.2012.03.593.
X.K. Wei, Y.T. Su, Y. Sui, Z.X. Zhou, Y. Yao, C.Q. Jin and R.C. Yu, J.Appl. Phys., 102, 242910 (2013); https://doi.org/10.1063/1.4811699.
R. Maier and J.L. Cohn, J. Appl. Phys., 92, 5429 (2002); https://doi.org/10.1063/1.1510591.
A. Rajamani, G.F. Dionne, D. Bono and C.A. Ross, J. Appl. Phys., 98, 063907 (2005); https://doi.org/10.1063/1.2060945.
H. Liu, B. Cao and C. O’Connor, J. Appl. Phys., 109, 07B516 (2011); https://doi.org/10.1063/1.3556768.
F. Lin, D. Jiang, X. Ma and W. Shi, J. Magn. Magn. Mater., 320, 691 (2008); https://doi.org/10.1016/j.jmmm.2007.08.008.
S.Y. Qiu, W. Li, Y. Liu, G.H. Liu, Y.Q. Wu and N. Chen, Trans. Nonferr. Met. Soc. China, 20, 1911 (2010); https://doi.org/10.1016/S1003-6326(09)60394-0.
X.K. Wei, Q.H. Zhang, F.Y. Li, C.Q. Jin and R.C. Yu, J. Alloys Comp., 508, 486 (2010); https://doi.org/10.1016/j.jallcom.2010.08.099.
C.F. Chen, G. King, R.M. Dickerson, P.A. Papin, S. Gupta, W.R. Kellogg and G. Wu, Nano Energy, 13, 423 (2015); https://doi.org/10.1016/j.nanoen.2015.03.005.
T.A. Vanderah, J.M. Loezos and R.S. Roth, J. Solid State Chem., 121, 38 (1996); https://doi.org/10.1006/jssc.1996.0006.
P.P. Khirade, S.D. Birajdar, A.V. Raut and K.M. Jadhav, Ceram. Int., 42, 12441 (2016); https://doi.org/10.1016/j.ceramint.2016.05.021.
N.V. Dang, N.T. Dung, P.T. Phong and I. Lee, Physica B, 457, 103 (2015); https://doi.org/10.1016/j.physb.2014.09.046.
F. Aziz, P. Pandey, M. Chandra, A. Khare, D.S. Rana and K.R. Mavani, J. Magn. Magn. Mater., 356, 98 (2014); https://doi.org/10.1016/j.jmmm.2013.12.037.
W.H. Zhang, L. Chen, Y.T. Tao, W.H. Zhang, J. Chen and J.X. Zhang, Physica B, 406, 4630 (2011); https://doi.org/10.1016/j.physb.2011.09.046.
G. Murugesan, R. Nithya and S. Kalainathan, Int. J. ChemTech Res., 6, 1633 (2014).
A. Elbasset, Ph.D. Thesis, Synthèse et caractérisation des matériaux céramiques de BaTiO3 purs et dopés au strontium et au zirconium, Université Sidi Mohamed Ben Abdellah, Fez, Morroco (2014).
B. Deka, S. Ravi, A. Perumal and D. Pamu, Physica B, 448, 204 (2014); https://doi.org/10.1016/j.physb.2014.03.069.
I.N. Apostolova, A.T. Apostolov, S.G. Bahoosh and J.M. Wesselinowa, J. Appl. Phys., 113, 203904 (2013); https://doi.org/10.1063/1.4807412.
B. Xu, K.B. Yin, J. Lin, Y.D. Xia, X.G. Wan, J. Yin, X.J. Bai, J. Du and Z.G. Liu, Phys. Rev. B, 79, 134109 (2009); https://doi.org/10.1103/PhysRevB.79.134109.
D.P. Dutta, M. Roy, N. Maiti and A.K. Tyagi, Phys. Chem. Chem. Phys., 18, 9758 (2016); https://doi.org/10.1039/C5CP07736B.