Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel Approach Towards the Synthesis of Poly Heterocyclic Compounds: Total Synthesis of 12-Oxa-6,10b-epoxy-4b,5,6,10b,11,12-hexahydrochrysene
Corresponding Author(s) : Jasamrit Kaur
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
A simple and facile synthesis of the hexahydrochrysene derivative, 12-oxa-6,10b-epoxy-4b,5,6,10b,11,12-hexahydrochrysene has been reported through the use of conventional and green methodologies. The key steps are, microwave assisted O-alkylation of a bromophenol ether, synthesis of halosynthon, 1,4-dihydro-1,4-epoxynaphthalenyl methyl o-bromophenyl ether via reaction with benzyne formed in situ followed by its subsequent 6-exo-trig cyclization towards the synthesis of the polycyclic ring system in good yield.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Cabrele and O. Reiser, J. Org. Chem., 81, 10109 (2016); https://doi.org/10.1021/acs.joc.6b02034.
- L.-P. Kang, K.-L. Wu, H.-S. Yu, X. Pang, J. Liu, L.-F. Han, J. Zhang, Y. Zhao, C.-Q. Xiong, X.-B. Song, C. Liu, Y.-W. Cong and B.-P. Ma, Phytochemistry, 107, 182 (2014); https://doi.org/10.1016/j.phytochem.2014.08.003.
- R.S. Ghogare, S.B. Wadavrao and A.V. Narsaiah, Helv. Chim. Acta, 99, 247 (2016); https://doi.org/10.1002/hlca.201500110.
- R.-R. Zhang, H.-Y. Tian, Y.-F. Tan, T.-Y. Chung, X.-H. Sun, X. Xia, W.-C. Ye, D.A. Middleton, N. Fedosova, M. Esmann, J.T.C. Tzen and R.-W. Jiang, Org. Biomol. Chem., 12, 8919 (2014); https://doi.org/10.1039/C4OB01545B.
- I. Colomer, R. Coura Barcelos and T.J. Donohoe, Angew. Chem. Int. Ed., 55, 4748 (2016); https://doi.org/10.1002/anie.201511683.
- B. Ranieri, C. Obradors, M. Mato and A.M. Echavarren, Org. Lett., 18, 1614 (2016); https://doi.org/10.1021/acs.orglett.6b00473.
- 7 M. Feng, B. Tang, S. H. Liang and X. Jiang, Curr. Top. Med. Chem., 16, 1200 (2016); https://doi.org/10.2174/1568026615666150915111741.
- S.L. Badshah and A. Naeem, Molecules, 21, 1054 (2016); https://doi.org/10.3390/molecules21081054.
- Y.N. Mabkhot, F. Alatibi, N. El-Sayed, N. Kheder and S. Al-Showiman, Molecules, 21, 1036 (2016); https://doi.org/10.3390/molecules21081036.
- M. Baumann and I.R. Baxendale, Beilstein J. Org. Chem., 9, 2265 (2013); https://doi.org/10.3762/bjoc.9.265.
- M. Dong, F. Liu, H. Zhou, S. Zhai and B. Yan, Molecules, 21, 1375 (2016); https://doi.org/10.3390/molecules21101375.
- N.A. Meanwell, Adv. Heterocycl. Chem., 123, 245 (2017); https://doi.org/10.1016/bs.aihch.2016.11.002.
- Y.-J. Jin, C.-C. Lin, T.-M. Luc, J.-H. Li, I.-S. Chen, Y.-H. Kuo and H.-H. Ko, Phytochemistry, 117, 424 (2015); https://doi.org/10.1016/j.phytochem.2015.07.003.
- L. Eccleshare, S. Selzer and S. Woodward, Tetrahedron Lett., 58, 393 (2017); https://doi.org/10.1016/j.tetlet.2016.12.004.
- R. Tedesco, M.K. Youngman, S.R. Wilson and J.A. Katzenellenbogen, Bioorg. Med. Chem. Lett., 11, 1281 (2001); https://doi.org/10.1016/S0960-894X(01)00189-5.
- H.-C. Chen, Q. Xia, S.-H. Cherng, S. Chen, C.-C. Lai, H. Yu and P.P. Fu, Int. J. Environ. Res. Public Health, 4, 145 (2007); https://doi.org/10.3390/ijerph2007040009.
- J. Singh, M. Bhandari, J. Kaur and G.L. Kad, Indian J. Chem., 42B, 405 (2003).
- J. Kaur, I. Kaur, G. Jindal, P. Manhas, N. Gupta and J. Singh, J. Chem. Res., 39, 230 (2015).
- G.L. Kad, I. Kaur, M. Bhandari, J. Singh and J. Kaur, Org. Process Res. Dev., 7, 339 (2003); https://doi.org/10.1021/op025606h.
- G.L. Kad, M. Bhandari, J. Kaur, R. Rathee and J. Singh, Green Chem., 3, 275 (2001); https://doi.org/10.1039/b107356g.
- G.L. Kad, V. Singh, S. Chaudhary, S. Setia, M. Bhandari and J. Singh, Ultrason. Sonochem., 8, 123 (2001); https://doi.org/10.1016/S1350-4177(00)00063-8.
- J. Singh, I. Kaur, J. Kaur, A. Bhalla and G.L. Kad, Synth. Commun., 33, 191 (2003); https://doi.org/10.1081/SCC-120015699.
- S. Nayyar, I.R. Trehan and J. Kaur, Indian J. Chem., 41B, 2342 (2002).
- L. Friedman and F.M. Logullo, J. Org. Chem., 34, 3089 (1969); https://doi.org/10.1021/jo01262a065.
- A.L.J. Beckwith and W.B. Gara, J Chem. Soc. Perkin Trans. II, 795 (1975); https://doi.org/10.1039/p29750000795.
- A.L.J. Beckwith, D.M. Oshea and D.H. Roberts, J. Chem. Soc. Chem. Commun., 1445 (1983); https://doi.org/10.1039/c39830001445.
References
C. Cabrele and O. Reiser, J. Org. Chem., 81, 10109 (2016); https://doi.org/10.1021/acs.joc.6b02034.
L.-P. Kang, K.-L. Wu, H.-S. Yu, X. Pang, J. Liu, L.-F. Han, J. Zhang, Y. Zhao, C.-Q. Xiong, X.-B. Song, C. Liu, Y.-W. Cong and B.-P. Ma, Phytochemistry, 107, 182 (2014); https://doi.org/10.1016/j.phytochem.2014.08.003.
R.S. Ghogare, S.B. Wadavrao and A.V. Narsaiah, Helv. Chim. Acta, 99, 247 (2016); https://doi.org/10.1002/hlca.201500110.
R.-R. Zhang, H.-Y. Tian, Y.-F. Tan, T.-Y. Chung, X.-H. Sun, X. Xia, W.-C. Ye, D.A. Middleton, N. Fedosova, M. Esmann, J.T.C. Tzen and R.-W. Jiang, Org. Biomol. Chem., 12, 8919 (2014); https://doi.org/10.1039/C4OB01545B.
I. Colomer, R. Coura Barcelos and T.J. Donohoe, Angew. Chem. Int. Ed., 55, 4748 (2016); https://doi.org/10.1002/anie.201511683.
B. Ranieri, C. Obradors, M. Mato and A.M. Echavarren, Org. Lett., 18, 1614 (2016); https://doi.org/10.1021/acs.orglett.6b00473.
7 M. Feng, B. Tang, S. H. Liang and X. Jiang, Curr. Top. Med. Chem., 16, 1200 (2016); https://doi.org/10.2174/1568026615666150915111741.
S.L. Badshah and A. Naeem, Molecules, 21, 1054 (2016); https://doi.org/10.3390/molecules21081054.
Y.N. Mabkhot, F. Alatibi, N. El-Sayed, N. Kheder and S. Al-Showiman, Molecules, 21, 1036 (2016); https://doi.org/10.3390/molecules21081036.
M. Baumann and I.R. Baxendale, Beilstein J. Org. Chem., 9, 2265 (2013); https://doi.org/10.3762/bjoc.9.265.
M. Dong, F. Liu, H. Zhou, S. Zhai and B. Yan, Molecules, 21, 1375 (2016); https://doi.org/10.3390/molecules21101375.
N.A. Meanwell, Adv. Heterocycl. Chem., 123, 245 (2017); https://doi.org/10.1016/bs.aihch.2016.11.002.
Y.-J. Jin, C.-C. Lin, T.-M. Luc, J.-H. Li, I.-S. Chen, Y.-H. Kuo and H.-H. Ko, Phytochemistry, 117, 424 (2015); https://doi.org/10.1016/j.phytochem.2015.07.003.
L. Eccleshare, S. Selzer and S. Woodward, Tetrahedron Lett., 58, 393 (2017); https://doi.org/10.1016/j.tetlet.2016.12.004.
R. Tedesco, M.K. Youngman, S.R. Wilson and J.A. Katzenellenbogen, Bioorg. Med. Chem. Lett., 11, 1281 (2001); https://doi.org/10.1016/S0960-894X(01)00189-5.
H.-C. Chen, Q. Xia, S.-H. Cherng, S. Chen, C.-C. Lai, H. Yu and P.P. Fu, Int. J. Environ. Res. Public Health, 4, 145 (2007); https://doi.org/10.3390/ijerph2007040009.
J. Singh, M. Bhandari, J. Kaur and G.L. Kad, Indian J. Chem., 42B, 405 (2003).
J. Kaur, I. Kaur, G. Jindal, P. Manhas, N. Gupta and J. Singh, J. Chem. Res., 39, 230 (2015).
G.L. Kad, I. Kaur, M. Bhandari, J. Singh and J. Kaur, Org. Process Res. Dev., 7, 339 (2003); https://doi.org/10.1021/op025606h.
G.L. Kad, M. Bhandari, J. Kaur, R. Rathee and J. Singh, Green Chem., 3, 275 (2001); https://doi.org/10.1039/b107356g.
G.L. Kad, V. Singh, S. Chaudhary, S. Setia, M. Bhandari and J. Singh, Ultrason. Sonochem., 8, 123 (2001); https://doi.org/10.1016/S1350-4177(00)00063-8.
J. Singh, I. Kaur, J. Kaur, A. Bhalla and G.L. Kad, Synth. Commun., 33, 191 (2003); https://doi.org/10.1081/SCC-120015699.
S. Nayyar, I.R. Trehan and J. Kaur, Indian J. Chem., 41B, 2342 (2002).
L. Friedman and F.M. Logullo, J. Org. Chem., 34, 3089 (1969); https://doi.org/10.1021/jo01262a065.
A.L.J. Beckwith and W.B. Gara, J Chem. Soc. Perkin Trans. II, 795 (1975); https://doi.org/10.1039/p29750000795.
A.L.J. Beckwith, D.M. Oshea and D.H. Roberts, J. Chem. Soc. Chem. Commun., 1445 (1983); https://doi.org/10.1039/c39830001445.