Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Exploring Viscoelastic Characteristics of Polymer-Water Solutions by Viscometric Analysis
Corresponding Author(s) : Ashish Kapoor
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
Addition of small concentrations of certain high molecular weight polymers to flowing fluids can drastically reduce the turbulent friction. The mechanism is caused by the interaction of the elongated polymer molecule chains and the solvent molecules. The elongated structure of polymer acts as an eddy stress absorber and in turns ensures overall drag reduction between fluid layers. This can also be stated as the development of viscoelastic nature in the subject fluid. The present study compares the effects of the addition of two polymers namely polyacrylamide (PAM) and polyethylene oxide (PEO) in water, a Newtonian fluid. An experimental study using a viscometer is analyzed to showcase the viscoelastic nature developed by water on addition of polymers over a range of ppm concentrations. The results are in agreement with data reported in literature that viscoelastic nature is triggered on addition of these polymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. van den Brule and M.A. Hulsen, Flow Turbul. Combus., 66, 159 (2001); https://doi.org/10.1023/A:1017985826227.
- T. Min, J. Yul Yoo, H. Choi and D.D. Joseph, J. Fluid Mech., 486, 213 (2003); https://doi.org/10.1017/S0022112003004610.
- A.H. Barnes, A Handbook of Elementary Rheology, University of Wales, Institute of Non-Newtonian Fluid Mechanics: Aberystwyth, edn 1 (2000).
- E.O. Akindoyo, H.A. Abdulbari and Z. Yousif, Int. J. Res. Eng. Technol., 4, 84 (2015).
- D. Kulmatova, Ph.D. thesis, Turbulent Drag Reduction by Additives, Van der Waals-Zeeman Institute (WZI), Amsterdam, Netherlands (2013).
- C.V. Subbarao, D.A. Naidu and P. King, Int. J. Appl. Sci. Eng., 11, 159 (2013).
- H.P. Soni and D.P. Bharambe, Iran. Polym. J., 15, 943 (2006).
- F. Holland and R. Bragg, Fluid Flow for Chemical and Process Engineers, Elsevier: Burlington, edn 1 (1995).
- J.M.J. Den Toonder, M.A. Hulsen, G.D.C. Kuiken and F.T.M. Nieuwstadt, J. Fluid Mech., 337, 193 (1997); https://doi.org/10.1017/S0022112097004850.
- M.D. Graham, Rheol. Rev., 2, 143 (2004).
- G. Nesyn, K. Konovalov, O. Vetrova and P. Menshov, Procedia Chem., 15, 371 (2015); https://doi.org/10.1016/j.proche.2015.10.059.
- A.A. Khadom and A.A. Abdul-Hadi, Ain Shams Eng. J., 5, 861 (2014); https://doi.org/10.1016/j.asej.2014.04.005.
- C.M. White and M.G. Mungal, Annu. Rev. Fluid Mech., 40, 235 (2008); https://doi.org/10.1146/annurev.fluid.40.111406.102156.
- A. Japper-Jaafar, M.P. Escudier and R.J. Poole, J. Non-Newt. Fluid Mech., 161, 86 (2009); https://doi.org/10.1016/j.jnnfm.2009.04.008.
- G.M.H. Nieuwenhuys, Masters Thesis, Effect of Drag-Reducing Polymers on a Vertical Multiphase Flow, Delft University of Technology, Delft, Netherlands (2003).
- M.H. Hassanean, M.E. Awad, H. Marwan, A.A. Bhran and M. Kaoud, Egypt. J. Petrol., 25, 39 (2016); https://doi.org/10.1016/j.ejpe.2015.02.013.
- B. Yu, F. Li and Y. Kawaguchi, Int. J. Heat Fluid Flow, 25, 961 (2004); https://doi.org/10.1016/j.ijheatfluidflow.2004.02.029.
- A.S. Pereira, R.M. Andrade and E.J. Soares, J. Non-Newt. Fluid Mech., 202, 72 (2013); https://doi.org/10.1016/j.jnnfm.2013.09.008.
- A.A. Mohsenipour, R. Pal and K. Prajapati, Can. J. Chem. Eng., 91, 181 (2013); https://doi.org/10.1002/cjce.20686.
References
P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. van den Brule and M.A. Hulsen, Flow Turbul. Combus., 66, 159 (2001); https://doi.org/10.1023/A:1017985826227.
T. Min, J. Yul Yoo, H. Choi and D.D. Joseph, J. Fluid Mech., 486, 213 (2003); https://doi.org/10.1017/S0022112003004610.
A.H. Barnes, A Handbook of Elementary Rheology, University of Wales, Institute of Non-Newtonian Fluid Mechanics: Aberystwyth, edn 1 (2000).
E.O. Akindoyo, H.A. Abdulbari and Z. Yousif, Int. J. Res. Eng. Technol., 4, 84 (2015).
D. Kulmatova, Ph.D. thesis, Turbulent Drag Reduction by Additives, Van der Waals-Zeeman Institute (WZI), Amsterdam, Netherlands (2013).
C.V. Subbarao, D.A. Naidu and P. King, Int. J. Appl. Sci. Eng., 11, 159 (2013).
H.P. Soni and D.P. Bharambe, Iran. Polym. J., 15, 943 (2006).
F. Holland and R. Bragg, Fluid Flow for Chemical and Process Engineers, Elsevier: Burlington, edn 1 (1995).
J.M.J. Den Toonder, M.A. Hulsen, G.D.C. Kuiken and F.T.M. Nieuwstadt, J. Fluid Mech., 337, 193 (1997); https://doi.org/10.1017/S0022112097004850.
M.D. Graham, Rheol. Rev., 2, 143 (2004).
G. Nesyn, K. Konovalov, O. Vetrova and P. Menshov, Procedia Chem., 15, 371 (2015); https://doi.org/10.1016/j.proche.2015.10.059.
A.A. Khadom and A.A. Abdul-Hadi, Ain Shams Eng. J., 5, 861 (2014); https://doi.org/10.1016/j.asej.2014.04.005.
C.M. White and M.G. Mungal, Annu. Rev. Fluid Mech., 40, 235 (2008); https://doi.org/10.1146/annurev.fluid.40.111406.102156.
A. Japper-Jaafar, M.P. Escudier and R.J. Poole, J. Non-Newt. Fluid Mech., 161, 86 (2009); https://doi.org/10.1016/j.jnnfm.2009.04.008.
G.M.H. Nieuwenhuys, Masters Thesis, Effect of Drag-Reducing Polymers on a Vertical Multiphase Flow, Delft University of Technology, Delft, Netherlands (2003).
M.H. Hassanean, M.E. Awad, H. Marwan, A.A. Bhran and M. Kaoud, Egypt. J. Petrol., 25, 39 (2016); https://doi.org/10.1016/j.ejpe.2015.02.013.
B. Yu, F. Li and Y. Kawaguchi, Int. J. Heat Fluid Flow, 25, 961 (2004); https://doi.org/10.1016/j.ijheatfluidflow.2004.02.029.
A.S. Pereira, R.M. Andrade and E.J. Soares, J. Non-Newt. Fluid Mech., 202, 72 (2013); https://doi.org/10.1016/j.jnnfm.2013.09.008.
A.A. Mohsenipour, R. Pal and K. Prajapati, Can. J. Chem. Eng., 91, 181 (2013); https://doi.org/10.1002/cjce.20686.