Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Pyridine and Tribenzylamine on the Hydrolysis Kinetics of Benzoyl Chloride in Water-Dioxane System
Corresponding Author(s) : Mohammad A. Batiha
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
The aim of this paper was to study the effect of tribenzylamine and pyridine on the kinetics of the hydrolysis reaction of benzoyl chloride in water-dioxane solution. The benzoyl chloride and water initial concentrations were 0.005 and 1 mol/L, respectively. While, the initial concentrations of pyridine and tribenzylamine varied in the range of 0.005-0.02 mol/L and 0.007-0.014 mol/L, respectively. It was found that the addition of tribenzylamine to benzoyl chloride hydrolysis reaction has no catalytic effect and hence the rate constant can be calculated using a first-order rate equation. In the presence of pyridine, reaction obeyed second-order rate. The relationship between the reaction rate constant and pyridine initial concentration was found to be linear with a rate constant of 0.752 × 10–3 min–1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- El-Hussieny M. Diefallah, M.A. Mousa, M.A. Ashy and S.A. Ghonaim, Z. Phys. Chem., 115, 89 (1979); https://doi.org/10.1524/zpch.1979.115.1.089.
- M.-L. Wang, C.-C. Ou and J.-J. Jwo, Chem. Eng. Commun., 179, 233 (2000); https://doi.org/10.1080/00986440008912198.
- P. Wang, J. Zhang, K. Wang, G. Luo and P. Xie, Ind. Eng. Chem. Res., 55, 6310 (2016); https://doi.org/10.1021/acs.iecr.6b00506.
- J. Báscuas, L. Garcia-Rio and J.R. Leis, Org. Biomol. Chem., 2, 1186 (2004); https://doi.org/10.1039/B400302K.
- J. Báscuas, L. García-Río, J.R. Leis and M. Méndez-Pérez, J. Incl. Phenom. Macrocycl. Chem., 57, 603 (2007); https://doi.org/10.1007/s10847-006-9276-x.
- T.W. Bentley and H.C. Harris, Int. J. Mol. Sci., 12, 4805 (2011); https://doi.org/10.3390/ijms12084805.
- D.N. Kevill and M.J. D’Souza, J. Phys. Org. Chem., 15, 881 (2002); https://doi.org/10.1002/poc.569.
- S.G. Éntelis, R.P., Tiger, E.Ya. Nevel’skiiand I.V. Épel’baum, Russ. Chem. Bull., 12, 223 (1963); https://doi.org/10.1007/BF00846386.
- M.A. Batiha, E.A. Chizhova and M.M. Batiha, Asian J. Chem., 25, 4087 (2013); https://doi.org/10.14233/ajchem.2013.14238.
- N.S. Ivanovo, N.K. Vorobuv and G.V. Kulikova, Problems Kinetics Catal., 5, 33 (1979).
- N.K. Vorobuv and O.K. Shebanova, Chem. Chem. Technol., 17, 688 (1974).
- O.K. Shebanovo, E.A. Chizhova and E.V. Kulibaba, Chem. Chem. Technol., 18, 709 (1975).
References
El-Hussieny M. Diefallah, M.A. Mousa, M.A. Ashy and S.A. Ghonaim, Z. Phys. Chem., 115, 89 (1979); https://doi.org/10.1524/zpch.1979.115.1.089.
M.-L. Wang, C.-C. Ou and J.-J. Jwo, Chem. Eng. Commun., 179, 233 (2000); https://doi.org/10.1080/00986440008912198.
P. Wang, J. Zhang, K. Wang, G. Luo and P. Xie, Ind. Eng. Chem. Res., 55, 6310 (2016); https://doi.org/10.1021/acs.iecr.6b00506.
J. Báscuas, L. Garcia-Rio and J.R. Leis, Org. Biomol. Chem., 2, 1186 (2004); https://doi.org/10.1039/B400302K.
J. Báscuas, L. García-Río, J.R. Leis and M. Méndez-Pérez, J. Incl. Phenom. Macrocycl. Chem., 57, 603 (2007); https://doi.org/10.1007/s10847-006-9276-x.
T.W. Bentley and H.C. Harris, Int. J. Mol. Sci., 12, 4805 (2011); https://doi.org/10.3390/ijms12084805.
D.N. Kevill and M.J. D’Souza, J. Phys. Org. Chem., 15, 881 (2002); https://doi.org/10.1002/poc.569.
S.G. Éntelis, R.P., Tiger, E.Ya. Nevel’skiiand I.V. Épel’baum, Russ. Chem. Bull., 12, 223 (1963); https://doi.org/10.1007/BF00846386.
M.A. Batiha, E.A. Chizhova and M.M. Batiha, Asian J. Chem., 25, 4087 (2013); https://doi.org/10.14233/ajchem.2013.14238.
N.S. Ivanovo, N.K. Vorobuv and G.V. Kulikova, Problems Kinetics Catal., 5, 33 (1979).
N.K. Vorobuv and O.K. Shebanova, Chem. Chem. Technol., 17, 688 (1974).
O.K. Shebanovo, E.A. Chizhova and E.V. Kulibaba, Chem. Chem. Technol., 18, 709 (1975).