Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
X-Ray Analysis of Cadmium Oxide Nanostructured Films Synthesized with Different Precursor Molarities by Silar Method
Corresponding Author(s) : Hiten Sarma
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
Nanostructured cadmium oxide thin films have been synthesized onto suitably cleaned glass substrates by SILAR (successive ionic layer adsorption and reaction) method. X-ray diffraction study confirms the formation of nanocrystalline cubic phase of cadmium oxide in the films. Lattice constant is determined using Nelson Riley plots. Using X-ray broadening, crystallite sizes, lattice strain, stress and energy density were studied by using Williamson-Hall method and modified Williamson-Hall method. From literature review, it is seen that a number of researchers have applied these two methods for structural characterization of thin films of different nanocrystals, but till now modified Williamson-Hall method has not been used for CdO nanocrystals. Hence, we have used these methods for structural characterization of deposited CdO thin films. The ultra-high resolution transmission electron microscopic (UHRTEM) study shows that the shape of the particles is nearly spherical and the average particle size agrees well with the result obtained from X-ray diffraction study. Selected area electron diffraction patterns have also supported the formation of cubic phase of cadmium oxide.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.S. Muralidharan and A. Subramania, Nanoscience and Technology, CRC Press, New Delhi, pp. 542 (2009).
- B.C. Ejelonu and P.A. Ajibade, Chalcogenide Lett., 13, 563 (2016).
- D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, edn 77, p. 12/97 and 3/278 (1996/97).
- F. Zhang, F. Bei, J. Cao and X. Wang, J. Solid State Chem., 181, 143 (2008); https://doi.org/10.1016/j.jssc.2007.11.004.
- N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran and J.J. Vijaya, Powder Technol., 211, 250 (2011); https://doi.org/10.1016/j.powtec.2011.04.031.
- N. Varghese, L.S. Panchakarla, M. Hanapi, A. Govindaraj and C.N.R. Rao, Mater. Res. Bull., 42, 2117 (2007); https://doi.org/10.1016/j.materresbull.2007.01.017.
- D.D. Vijaykarthik, M. Kirithika, N. Prithivikumaran and N. Jeyakumaran, Int. J. Nano Dimens., 5, 557 (2014); https://doi.org/10.7508/ijnd.2014.06.007.
- T. Kuo and M.H. Huang, J. Phys. Chem. B, 110, 13717 (2006); https://doi.org/10.1021/jp062854x.
- H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu and Y. Wu, Mater. Lett., 62, 3928 (2008); https://doi.org/10.1016/j.matlet.2008.05.010.
- A. Askarinejad and A. Morsali, Mater. Lett., 62, 478 (2008); https://doi.org/10.1016/j.matlet.2007.05.082.
- A. Tadjarodi and M. Imani, Mater. Lett., 65, 1025 (2011); https://doi.org/10.1016/j.matlet.2010.12.054.
- A. Ivanauskas, R. Ivanauskas and I. Ancutiene, Chalcogenide Lett., 13, 373 (2016).
- N. Choudhury and B.K. Sarma, Bull. Mater. Sci., 32, 43 (2009); https://doi.org/10.1007/s12034-009-0007-y.
- P.K. Mochahari and K.C. Sarma, Indian J. Phys., 88, 1265 (2014); https://doi.org/10.1007/s12648-014-0590-7.
- V.D. Mote, Y. Purushotham and B.N. Dole, J. Theor. Appl. Phys., 6, 6 (2012); doi:10.1186/2251-7235-6-6.
- Y.T. Prabhu, K.V. Rao, V.S. Kumar and B.S. Kumari, World J. Nano Sci. Eng., 4, 21 (2014); https://doi.org/10.4236/wjnse.2014.41004.
- P. Triloki, P. Garg, R. Rai and B.K. Singh, Nucl. Instrum. Methods Phys. Res. A, 736, 128 (2014); https://doi.org/10.1016/j.nima.2013.10.075.
- P.K. Mochahari, A. Rajbongshi, N. Choudhury, F. Singh and K.C. Sarma, Adv. Mater. Lett., 6, 354 (2015); https://doi.org/10.5185/amlett.2015.5719.
- P.K. Mochahari and K.C. Sarma, Indian J. Phys., 90, 21 (2016); https://doi.org/10.1007/s12648-015-0721-9.
- J.B. Nelson and D.P. Riley, Proc. Phys. Soc. Lond., 57, 160 (1945); https://doi.org/10.1088/0959-5309/57/3/302.
- S. Sen, S. K. Halder and S. P. Sen Gupta, J. Phys. Soc. Jpn., 38, 1641 (1975); https://doi.org/10.1143/JPSJ.38.1641.
- K.D. Rogers and P. Daniels, Biomaterials, 23, 2577 (2002); https://doi.org/10.1016/S0142-9612(01)00395-7.
- V. Saravanan, J. Joseph Prince and M. Anusuya, APRN J. Eng. Appl. Sci., 10, 2453 (2015).
- A.K. Zak and W.H.A. Majid, Ceram. Int., 36, 1905 (2010); https://doi.org/10.1016/j.ceramint.2010.03.022.
- M.A. Tagliente and M. Massaro, Nucl. Instrum. Methods Phys. Res. B, 266, 1055 (2008); https://doi.org/10.1016/j.nimb.2008.02.036.
- P. Rageswari and S. Dhanuskodi, Cryst. Res. Technol., 48, 589 (2013); https://doi.org/10.1002/crat.201300102.
- J.-M. Zhang, Y. Zhang, K.-W. Xu and V. Ji, Mater. Lett., 62, 1328 (2008); https://doi.org/10.1016/j.matlet.2007.08.038.
- A.A. Kelly and K.M. Knowles, Crystallography and Crystal Defects, Wiley, edn 2 (2012).
- A.J. Cinthia, G. Sudhapriyang, R. Rajeswarapalanichamy and M. Santhosh, Procedia Mater. Sci., 5, 1034 (2014); https://doi.org/10.1016/j.mspro.2014.07.394.
- D. Raoufi, J. Lumin., 134, 213 (2013); https://doi.org/10.1016/j.jlumin.2012.08.045.
- R.Y. Hong, J.Z. Qian and J.X. Cao, Powder Technol., 163, 160 (2006); https://doi.org/10.1016/j.powtec.2006.01.015.
- R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004.
References
V.S. Muralidharan and A. Subramania, Nanoscience and Technology, CRC Press, New Delhi, pp. 542 (2009).
B.C. Ejelonu and P.A. Ajibade, Chalcogenide Lett., 13, 563 (2016).
D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, edn 77, p. 12/97 and 3/278 (1996/97).
F. Zhang, F. Bei, J. Cao and X. Wang, J. Solid State Chem., 181, 143 (2008); https://doi.org/10.1016/j.jssc.2007.11.004.
N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran and J.J. Vijaya, Powder Technol., 211, 250 (2011); https://doi.org/10.1016/j.powtec.2011.04.031.
N. Varghese, L.S. Panchakarla, M. Hanapi, A. Govindaraj and C.N.R. Rao, Mater. Res. Bull., 42, 2117 (2007); https://doi.org/10.1016/j.materresbull.2007.01.017.
D.D. Vijaykarthik, M. Kirithika, N. Prithivikumaran and N. Jeyakumaran, Int. J. Nano Dimens., 5, 557 (2014); https://doi.org/10.7508/ijnd.2014.06.007.
T. Kuo and M.H. Huang, J. Phys. Chem. B, 110, 13717 (2006); https://doi.org/10.1021/jp062854x.
H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu and Y. Wu, Mater. Lett., 62, 3928 (2008); https://doi.org/10.1016/j.matlet.2008.05.010.
A. Askarinejad and A. Morsali, Mater. Lett., 62, 478 (2008); https://doi.org/10.1016/j.matlet.2007.05.082.
A. Tadjarodi and M. Imani, Mater. Lett., 65, 1025 (2011); https://doi.org/10.1016/j.matlet.2010.12.054.
A. Ivanauskas, R. Ivanauskas and I. Ancutiene, Chalcogenide Lett., 13, 373 (2016).
N. Choudhury and B.K. Sarma, Bull. Mater. Sci., 32, 43 (2009); https://doi.org/10.1007/s12034-009-0007-y.
P.K. Mochahari and K.C. Sarma, Indian J. Phys., 88, 1265 (2014); https://doi.org/10.1007/s12648-014-0590-7.
V.D. Mote, Y. Purushotham and B.N. Dole, J. Theor. Appl. Phys., 6, 6 (2012); doi:10.1186/2251-7235-6-6.
Y.T. Prabhu, K.V. Rao, V.S. Kumar and B.S. Kumari, World J. Nano Sci. Eng., 4, 21 (2014); https://doi.org/10.4236/wjnse.2014.41004.
P. Triloki, P. Garg, R. Rai and B.K. Singh, Nucl. Instrum. Methods Phys. Res. A, 736, 128 (2014); https://doi.org/10.1016/j.nima.2013.10.075.
P.K. Mochahari, A. Rajbongshi, N. Choudhury, F. Singh and K.C. Sarma, Adv. Mater. Lett., 6, 354 (2015); https://doi.org/10.5185/amlett.2015.5719.
P.K. Mochahari and K.C. Sarma, Indian J. Phys., 90, 21 (2016); https://doi.org/10.1007/s12648-015-0721-9.
J.B. Nelson and D.P. Riley, Proc. Phys. Soc. Lond., 57, 160 (1945); https://doi.org/10.1088/0959-5309/57/3/302.
S. Sen, S. K. Halder and S. P. Sen Gupta, J. Phys. Soc. Jpn., 38, 1641 (1975); https://doi.org/10.1143/JPSJ.38.1641.
K.D. Rogers and P. Daniels, Biomaterials, 23, 2577 (2002); https://doi.org/10.1016/S0142-9612(01)00395-7.
V. Saravanan, J. Joseph Prince and M. Anusuya, APRN J. Eng. Appl. Sci., 10, 2453 (2015).
A.K. Zak and W.H.A. Majid, Ceram. Int., 36, 1905 (2010); https://doi.org/10.1016/j.ceramint.2010.03.022.
M.A. Tagliente and M. Massaro, Nucl. Instrum. Methods Phys. Res. B, 266, 1055 (2008); https://doi.org/10.1016/j.nimb.2008.02.036.
P. Rageswari and S. Dhanuskodi, Cryst. Res. Technol., 48, 589 (2013); https://doi.org/10.1002/crat.201300102.
J.-M. Zhang, Y. Zhang, K.-W. Xu and V. Ji, Mater. Lett., 62, 1328 (2008); https://doi.org/10.1016/j.matlet.2007.08.038.
A.A. Kelly and K.M. Knowles, Crystallography and Crystal Defects, Wiley, edn 2 (2012).
A.J. Cinthia, G. Sudhapriyang, R. Rajeswarapalanichamy and M. Santhosh, Procedia Mater. Sci., 5, 1034 (2014); https://doi.org/10.1016/j.mspro.2014.07.394.
D. Raoufi, J. Lumin., 134, 213 (2013); https://doi.org/10.1016/j.jlumin.2012.08.045.
R.Y. Hong, J.Z. Qian and J.X. Cao, Powder Technol., 163, 160 (2006); https://doi.org/10.1016/j.powtec.2006.01.015.
R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004.