Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
FT-Raman Spectroscopy with Chemometric Methods for Quantification of Lamivudine Form II in Lamivudine Form I
Corresponding Author(s) : Y.V. Rami Reddy
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Lamivudine is known to exhibit polymorphism and the needle-shaped crystals are named as Form I and the bipyramidal crystals as Form II. The FT-Raman spectrum of lamivudine Form II and I shows characteristic bands at 798, 463 cm-1 and 697 cm-1 Raman shifts, respectively. FT-Raman spectroscopy method combined with chemometrics was developed for quantitative analysis of lamivudine Form II in lamivudine Form I drug substance. Solid mixtures of Form I and Form II shows the relative intensity of the characteristic bands at 798, 463 and 697 cm-1 were proportional to the relative amounts of Form I and Form II in mixtures. A calibration was made which is linear in the range from 1.0 to 20.0 % (w/w) of Form II in Form I. The results indicate that levels down to 3.0 % (w/w) of Form II could be quantified using this non-destructive approach, with less than 1.5 % (w/w) limit of detection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.G. Brittain, J. Pharm. Sci., 101, 464 (2012); https://doi.org/10.1002/jps.22788.
- A.J. Aguiar, J. Krc Jr., A.W. Kinkel and J.C. Samyn, J. Pharm. Sci., 56, 847 (1967); https://doi.org/10.1002/jps.2600560712.
- A.J. Aguiar and J.E. Zelmer, J. Pharm. Sci., 58, 983 (1969); https://doi.org/10.1002/jps.2600580817.
- S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, Pharm. Res., 12, 945 (1995); https://doi.org/10.1023/A:1016241927429.
- A.S. Raw, M.S. Furness, D.S. Gill, R.C. Adams Jr. and F.O. Holcombe, Adv. Drug Deliv. Rev., 56, 397 (2004); https://doi.org/10.1016/j.addr.2003.10.011.
- Food and Drug Administration, Center for Drug Evaluation and Research, Guidance for Industry, ANDAs: Pharmaceutical Solid Polymorphism: Chemistry, Manufacturing and Controls Information; https://www.fda.gov/downloads/Drugs/Guidances/UCM072866.pdf.
- J. Lucas and P. Burgess, Pharma Voice, 2, 54 (2004).
- H.G. Brittain, Polymorphism in Pharmaceutical Solids, Marcel Dekker, New York (1999).
- H. Qu, H. Alatalo, H. Hatakka, J. Kohonen, M. Louhi-Kultanen, S.-P. Reinikainen and J. Kallas, J. Cryst. Growth, 311, 3466 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.018.
- D.E. Bugay, Adv. Drug Deliv. Rev., 48, 43 (2001); https://doi.org/10.1016/S0169-409X(01)00101-6.
- D. Giron, Thermochim. Acta, 248, 1 (1995); https://doi.org/10.1016/0040-6031(94)01953-E.
- W.P. Findlay and D.E. Bugay, J. Pharm. Biomed. Anal., 16, 921 (1998); https://doi.org/10.1016/S0731-7085(97)00058-7.
- M.E. Auer, U.J. Griesser and J. Sawatzki, J. Mol. Struct., 661-662, 307 (2003); https://doi.org/10.1016/j.molstruc.2003.09.002.
- Z. Német, Á. Demeter and G. Pokol, J. Pharm. Biomed. Anal., 49, 32 (2009); https://doi.org/10.1016/j.jpba.2008.09.042.
- C.M. Deeley, R.A. Spragg and T.L. Threlfall, Spectrochim. Acta A Mol. Biomol. Spectrosc., 47, 1217 (1991); https://doi.org/10.1016/0584-8539(91)80208-Z.
- A.M. Tudor, S.J. Church, P.J. Hendra, M.C. Davies and C.D. Melia, Pharm. Res., 10, 1772 (1993); https://doi.org/10.1023/A:1018934417124.
- G. Jalsovszky, O. Egyed, S. Holly and B. Hegedus, Appl. Spectrosc., 49, 1142 (1995); https://doi.org/10.1366/0003702953965164.
- D. Pratiwi, J.P. Fawcett, K.C. Gordon and T. Rades, Eur. J. Pharm. Biopharm., 54, 337 (2002); https://doi.org/10.1016/S0939-6411(02)00113-3.
- E. Simone, A.N. Saleemi and Z.K. Nagy, Chem. Eng. Res. Des., 92, 594 (2014); https://doi.org/10.1016/j.cherd.2013.11.004.
- B. De Spiegeleer, B. Baert, N. Diericx, D. Seghers, F. Verpoort, L. Van Vooren, C. Burvenich and G. Slegers, J. Pharm. Biomed. Anal., 44, 254 (2007); https://doi.org/10.1016/j.jpba.2007.01.034.
- F. Tian, F. Zhang, N. Sandler, K.C. Gordon, C.M. McGoverin, C.J. Strachan, D.J. Saville and T. Rades, Eur. J. Pharm. Biopharm., 66, 466 (2007); https://doi.org/10.1016/j.ejpb.2006.12.002.
- UK Patent Application, 9111902.4 (1991).
- T.G. Roberts and P. Evans, Crystalline Oxathiolane Derivatives, US Patent 5,905,082 (1999).
- Y. Du, H. Zhang, J. Xue, W. Tang, H. Fang, Q. Zhang, Y. Li and Z. Hong, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 1158 (2015); https://doi.org/10.1016/j.saa.2014.08.128.
- J.R. Vascuri, R.R. Vennapureddy, S. Rama, R. Dandala and S. Meenakshisunderam, Process for the Preparation of Lamivudine Form, International Patent Application WO 2009/037538 A2 (2009).
- D.E. Bugay, A.W. Newman and W.P. Findlay, J. Pharm. Biomed. Anal., 15, 49 (1996); https://doi.org/10.1016/0731-7085(96)01796-7.
- S.N. Campbell Roberts, A.C. Williams, I.M. Grimsey and S.W. Booth, J. Pharm. Biomed. Anal., 28, 1135 (2002); https://doi.org/10.1016/S0731-7085(02)00059-6.
- S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica and J. Savovic, Spectrochim. Acta B At. Spectrosc., 128, 22 (2017); https://doi.org/10.1016/j.sab.2016.12.009.
- D.M. Croker, M.C. Hennigan, A. Maher, Y. Hu, A.G. Ryder and B.K. Hodnett, J. Pharm. Biomed. Anal., 63, 80 (2012); https://doi.org/10.1016/j.jpba.2012.01.013.
- T.M. Niemczyk, M. Delgado-Lopez, F.S. Allen, J.T. Clay and D.L. Arneberg, Appl. Spectrosc., 52, 513 (1998); https://doi.org/10.1366/0003702981944049.
References
H.G. Brittain, J. Pharm. Sci., 101, 464 (2012); https://doi.org/10.1002/jps.22788.
A.J. Aguiar, J. Krc Jr., A.W. Kinkel and J.C. Samyn, J. Pharm. Sci., 56, 847 (1967); https://doi.org/10.1002/jps.2600560712.
A.J. Aguiar and J.E. Zelmer, J. Pharm. Sci., 58, 983 (1969); https://doi.org/10.1002/jps.2600580817.
S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, Pharm. Res., 12, 945 (1995); https://doi.org/10.1023/A:1016241927429.
A.S. Raw, M.S. Furness, D.S. Gill, R.C. Adams Jr. and F.O. Holcombe, Adv. Drug Deliv. Rev., 56, 397 (2004); https://doi.org/10.1016/j.addr.2003.10.011.
Food and Drug Administration, Center for Drug Evaluation and Research, Guidance for Industry, ANDAs: Pharmaceutical Solid Polymorphism: Chemistry, Manufacturing and Controls Information; https://www.fda.gov/downloads/Drugs/Guidances/UCM072866.pdf.
J. Lucas and P. Burgess, Pharma Voice, 2, 54 (2004).
H.G. Brittain, Polymorphism in Pharmaceutical Solids, Marcel Dekker, New York (1999).
H. Qu, H. Alatalo, H. Hatakka, J. Kohonen, M. Louhi-Kultanen, S.-P. Reinikainen and J. Kallas, J. Cryst. Growth, 311, 3466 (2009); https://doi.org/10.1016/j.jcrysgro.2009.04.018.
D.E. Bugay, Adv. Drug Deliv. Rev., 48, 43 (2001); https://doi.org/10.1016/S0169-409X(01)00101-6.
D. Giron, Thermochim. Acta, 248, 1 (1995); https://doi.org/10.1016/0040-6031(94)01953-E.
W.P. Findlay and D.E. Bugay, J. Pharm. Biomed. Anal., 16, 921 (1998); https://doi.org/10.1016/S0731-7085(97)00058-7.
M.E. Auer, U.J. Griesser and J. Sawatzki, J. Mol. Struct., 661-662, 307 (2003); https://doi.org/10.1016/j.molstruc.2003.09.002.
Z. Német, Á. Demeter and G. Pokol, J. Pharm. Biomed. Anal., 49, 32 (2009); https://doi.org/10.1016/j.jpba.2008.09.042.
C.M. Deeley, R.A. Spragg and T.L. Threlfall, Spectrochim. Acta A Mol. Biomol. Spectrosc., 47, 1217 (1991); https://doi.org/10.1016/0584-8539(91)80208-Z.
A.M. Tudor, S.J. Church, P.J. Hendra, M.C. Davies and C.D. Melia, Pharm. Res., 10, 1772 (1993); https://doi.org/10.1023/A:1018934417124.
G. Jalsovszky, O. Egyed, S. Holly and B. Hegedus, Appl. Spectrosc., 49, 1142 (1995); https://doi.org/10.1366/0003702953965164.
D. Pratiwi, J.P. Fawcett, K.C. Gordon and T. Rades, Eur. J. Pharm. Biopharm., 54, 337 (2002); https://doi.org/10.1016/S0939-6411(02)00113-3.
E. Simone, A.N. Saleemi and Z.K. Nagy, Chem. Eng. Res. Des., 92, 594 (2014); https://doi.org/10.1016/j.cherd.2013.11.004.
B. De Spiegeleer, B. Baert, N. Diericx, D. Seghers, F. Verpoort, L. Van Vooren, C. Burvenich and G. Slegers, J. Pharm. Biomed. Anal., 44, 254 (2007); https://doi.org/10.1016/j.jpba.2007.01.034.
F. Tian, F. Zhang, N. Sandler, K.C. Gordon, C.M. McGoverin, C.J. Strachan, D.J. Saville and T. Rades, Eur. J. Pharm. Biopharm., 66, 466 (2007); https://doi.org/10.1016/j.ejpb.2006.12.002.
UK Patent Application, 9111902.4 (1991).
T.G. Roberts and P. Evans, Crystalline Oxathiolane Derivatives, US Patent 5,905,082 (1999).
Y. Du, H. Zhang, J. Xue, W. Tang, H. Fang, Q. Zhang, Y. Li and Z. Hong, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 1158 (2015); https://doi.org/10.1016/j.saa.2014.08.128.
J.R. Vascuri, R.R. Vennapureddy, S. Rama, R. Dandala and S. Meenakshisunderam, Process for the Preparation of Lamivudine Form, International Patent Application WO 2009/037538 A2 (2009).
D.E. Bugay, A.W. Newman and W.P. Findlay, J. Pharm. Biomed. Anal., 15, 49 (1996); https://doi.org/10.1016/0731-7085(96)01796-7.
S.N. Campbell Roberts, A.C. Williams, I.M. Grimsey and S.W. Booth, J. Pharm. Biomed. Anal., 28, 1135 (2002); https://doi.org/10.1016/S0731-7085(02)00059-6.
S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica and J. Savovic, Spectrochim. Acta B At. Spectrosc., 128, 22 (2017); https://doi.org/10.1016/j.sab.2016.12.009.
D.M. Croker, M.C. Hennigan, A. Maher, Y. Hu, A.G. Ryder and B.K. Hodnett, J. Pharm. Biomed. Anal., 63, 80 (2012); https://doi.org/10.1016/j.jpba.2012.01.013.
T.M. Niemczyk, M. Delgado-Lopez, F.S. Allen, J.T. Clay and D.L. Arneberg, Appl. Spectrosc., 52, 513 (1998); https://doi.org/10.1366/0003702981944049.