Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Purification of Crude Lactide to Polymerization Grade Purity by Molt Recrystallization Method
Corresponding Author(s) : Igor Konoplev
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Waste polymer materials are a greater threat to the environment, as a result it becomes necessary the development and production of biodegradable polymers. The process of purification of crude lactide by the method of melting impurities to polymerization grade L-lactide purity was investigated. Design and methodology for the process on a laboratory research installation was proposed. It is established that the yield and degree of purity of L-lactide are affected by two main parameters: the heating rate and nitrogen flow rate. It is found that under optimum conditions of purification of L-lactide from its major impurities is possible to obtain the product with polymerization grade purity with a yield of about 50 %. Optimal temperature profile of the process of the melting impurities were found. Wherein the total time of the stage of purification is reduced for 1.5 h with a sufficient reduction of energy consumption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Razza, F. Degli Innocenti, A. Dobon, C. Aliaga, C. Sanchez and M. Hortal, J. Clean. Prod., 102, 493 (2015); https://doi.org/10.1016/j.jclepro.2015.04.033.
- M.E. Vick and M.P. Garvey, Int. J. Environ. Sci. Educ., 11, 11675 (2016).
- S. Markova, E. Shherbakova and L. Depsames, S. Tsyplakova and S. Yakovleva, IEJME-Math. Educ., 11, 3457 (2016).
- G.E. Luckachan and C.K.S. Pillai, J. Polym. Environ., 19, 637 (2011); https://doi.org/10.1007/s10924-011-0317-1.
- G. Davis and J.H. Song, Ind. Crops Prod., 23, 147 (2006); https://doi.org/10.1016/j.indcrop.2005.05.004.
- A. Gandini and T.M. Lacerda, Prog. Polym. Sci., 48, 1 (2015); https://doi.org/10.1016/j.progpolymsci.2014.11.002.
- K.M. Nampoothiri, N.R. Nair and R.P. John, Bioresour. Technol., 101, 8493 (2010); https://doi.org/10.1016/j.biortech.2010.05.092.
- R. Auras, L-T. Lim, S. E. M. Selke and H. Tsuji. Poly(Lactic Acid), In: Synthesis, Structures, Properties, Processing and Applications, John Wiley & Sons, New Jersy, p. 499 (2010).
- J. Ren, Biodegradable Poly(Lactic Acid), In: Synthesis, Modification, Processing and Applications, Springer-Verlag, Berlin, p. 302 (2010).
- S. Shoemaker, Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic Acid Ester), University of California, Calidornia, USA, p. 67 (2004).
- T.J. Eggeman and H.P. Benecke, Method to Produce and Purify Cyclic Esters, Patent US 5675021 (1997).
- A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007); https://doi.org/10.1021/cr050989d.
- G.T. Tsao, S.J. Lee, G.-J. Tsai, J.-H. Seo, D.W. McQuigg, S.L. Vorhies and G. Iyer, Process for Producing and Recovering Lactic Acid, US Patent 5786185 (1998).
- A. Kumagai, M. Yaguchi, T. Arimura and S. Miura, Method for the Production of Lactic Acid and Lactic Esters, EP Patent 0614983 (1994).
- P.C. Walkup, C.A. Rohrmann, R.T. Hallen and D.E. Eakin, Production of Esters of Lactic acid, Esters of Acrylic Acid, Lactic Acid, and Acrylic Acid, US Patent 5071754 (1991).
- JP Patent 10036366, Production of Lactide (1998).
- P. Coszach, J.-C. Bogaert and F. van Gansberghe, Method for the Production of Polylactide from a Solution of Lactic Acid or One of the Derivatives Thereof, US Patent 7488783 (2006).
- D. Hai-bing and W. Ying-Zhi, Polyester, 23, 1 (2010).
- Z. Tao, S. Jian-ming, Z. Shao-Jun and J. Shouying, Chem. Eng., 38, 22 (2010).
- H. Ning, W. Peng, Z. Ying-Min and S. Chin, J. Process Eng., 7, 306 (2007).
References
F. Razza, F. Degli Innocenti, A. Dobon, C. Aliaga, C. Sanchez and M. Hortal, J. Clean. Prod., 102, 493 (2015); https://doi.org/10.1016/j.jclepro.2015.04.033.
M.E. Vick and M.P. Garvey, Int. J. Environ. Sci. Educ., 11, 11675 (2016).
S. Markova, E. Shherbakova and L. Depsames, S. Tsyplakova and S. Yakovleva, IEJME-Math. Educ., 11, 3457 (2016).
G.E. Luckachan and C.K.S. Pillai, J. Polym. Environ., 19, 637 (2011); https://doi.org/10.1007/s10924-011-0317-1.
G. Davis and J.H. Song, Ind. Crops Prod., 23, 147 (2006); https://doi.org/10.1016/j.indcrop.2005.05.004.
A. Gandini and T.M. Lacerda, Prog. Polym. Sci., 48, 1 (2015); https://doi.org/10.1016/j.progpolymsci.2014.11.002.
K.M. Nampoothiri, N.R. Nair and R.P. John, Bioresour. Technol., 101, 8493 (2010); https://doi.org/10.1016/j.biortech.2010.05.092.
R. Auras, L-T. Lim, S. E. M. Selke and H. Tsuji. Poly(Lactic Acid), In: Synthesis, Structures, Properties, Processing and Applications, John Wiley & Sons, New Jersy, p. 499 (2010).
J. Ren, Biodegradable Poly(Lactic Acid), In: Synthesis, Modification, Processing and Applications, Springer-Verlag, Berlin, p. 302 (2010).
S. Shoemaker, Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic Acid Ester), University of California, Calidornia, USA, p. 67 (2004).
T.J. Eggeman and H.P. Benecke, Method to Produce and Purify Cyclic Esters, Patent US 5675021 (1997).
A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007); https://doi.org/10.1021/cr050989d.
G.T. Tsao, S.J. Lee, G.-J. Tsai, J.-H. Seo, D.W. McQuigg, S.L. Vorhies and G. Iyer, Process for Producing and Recovering Lactic Acid, US Patent 5786185 (1998).
A. Kumagai, M. Yaguchi, T. Arimura and S. Miura, Method for the Production of Lactic Acid and Lactic Esters, EP Patent 0614983 (1994).
P.C. Walkup, C.A. Rohrmann, R.T. Hallen and D.E. Eakin, Production of Esters of Lactic acid, Esters of Acrylic Acid, Lactic Acid, and Acrylic Acid, US Patent 5071754 (1991).
JP Patent 10036366, Production of Lactide (1998).
P. Coszach, J.-C. Bogaert and F. van Gansberghe, Method for the Production of Polylactide from a Solution of Lactic Acid or One of the Derivatives Thereof, US Patent 7488783 (2006).
D. Hai-bing and W. Ying-Zhi, Polyester, 23, 1 (2010).
Z. Tao, S. Jian-ming, Z. Shao-Jun and J. Shouying, Chem. Eng., 38, 22 (2010).
H. Ning, W. Peng, Z. Ying-Min and S. Chin, J. Process Eng., 7, 306 (2007).