Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Proficient Removal of As(III) from Water Using Orchid Plant (Vanda sp.) as Biosorbent
Corresponding Author(s) : Piyush Kant Pandey
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
This paper reports the use of an orchid plant of Vanda species for absorptive removal of hazardous As(III) from aqueous solution. Optimum conditions were determined by analyzing various parameters such as pH, contact time, biomass dose and initial metal ion concentration and the interfering radicals. In batch studies the percentage removal of As(III) was 98 % per gram of adsorbent for As(III) concentration of 2 mg/L. The adsorption isotherm models such as Langmuir and Freundlich were studied and both were found to be valid. Characterization of biosorbent was done by FTIR and SEM-EDS analysis. FTIR analysis confirms the biosorption process involved OH, CO and NH functional group in the removal of As(III). SEM result shows structural changes on surface and EDS result reveals the presence of As(III) on the surface of biosorbent. The maximum biosorption potential, through the continuous flow study was 0.9 mg/g.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.K. Pandey, S. Choubey, Y. Verma, M. Pandey and K. Chandrashekhar, Bioresour. Technol., 100, 634 (2009); https://doi.org/10.1016/j.biortech.2008.07.063.
- D. Chakraborti, M.M. Rahman, S. Ahamed, R.N. Dutta, S. Pati and S.C. Mukherjee, Chemosphere, 152, 520 (2016); https://doi.org/10.1016/j.chemosphere.2016.02.119.
- D. Bhattacharyya and P.K. Mukherjee, Environ. Geol., 57, 1687 (2009); https://doi.org/10.1007/s00254-008-1450-6.
- B. Sen Gupta, S. Chatterjee, U. Rott, H. Kauffman, A. Bandopadhyay, W. DeGroot, N.K. Nag, A.A. Carbonell-Barrachina and S. Mukherjee, Environ. Pollut., 157, 3351 (2009); https://doi.org/10.1016/j.envpol.2009.09.014.
- D. Chakraborti, B. Das, M.M. Rahman, U.K. Chowdhury, B. Biswas, A.B. Goswami, B. Nayak, A. Pal, M.K. Sengupta, S. Ahamed, A. Hossain, G. Basu, T. Roychowdhury and D. Das, Mol. Nutr. Food Res., 53, 542 (2009); https://doi.org/10.1002/mnfr.200700517.
- P.L. Smedley and D.G. Kinniburgh, Appl. Geochem., 17, 517 (2002); https://doi.org/10.1016/S0883-2927(02)00018-5.
- D. Mohan and C.U. Pittman Jr., J. Hazard. Mater., 142, 1 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.006.
- B.K. Biswas, J.I. Inoue, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto and H. Kawakita, J. Hazard. Mater., 154, 1066 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.030.
- Y.-S. Hong, K.-H. Song and J.-Y. Chung, J. Prev. Med. Public Health, 47, 245 (2014); https://doi.org/10.3961/jpmph.14.035.
- J.M. Desesso, C.F. Jacobson, A.R. Scialli, C.H. Farr and J.F. Holson, Reprod. Toxicol., 12, 385 (1998); https://doi.org/10.1016/S0890-6238(98)00021-5.
- W. Wang, L. Yang, S. Hou, J. Tan and H. Li, Curr. Sci., 81, 1215 (2001).
- H. Xu, S.H. Lam, Y. Shen and Z. Gong, PLoS One, 8, 68737 (2013); https://doi.org/10.1371/journal.pone.0068737.
- H. Bolt, Arch. Toxicol., 86, 825 (2012); https://doi.org/10.1007/s00204-012-0866-7.
- C.R. Lage, A. Nayak and C.H. Kim, Integr. Comp. Biol., 46, 1040 (2006); https://doi.org/10.1093/icb/icl048.
- A.K. Das, Bio-inorganic Chemistry, Books & Allied (P) Ltd., edn 1 (2007).
- N. Marchiset-Ferlay, C. Savanovitch and M.P. Sauvant-Rochat, Environ. Int., 39, 150 (2012); https://doi.org/10.1016/j.envint.2011.07.015.
- WHO, Arsenic in Drinking Water, Fact Sheet No. 210, Geneva (1999).
- F.S. Zhang and H. Itoh, Chemosphere, 60, 319 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.019.
- N. Balasubramanian, T. Kojima, C.A. Basha and C. Srinivasakannan, J. Hazard. Mater., 167, 966 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.081.
- G. Ghurye, L. Clifford and D.A. Tripp, J. Am. Water Works Assoc., 91, 85 (1999).
- S. McNeill and M. Edwards, J. Am. Water Works Assoc., 89, 75 (1997).
- D.H. Kim, K.W. Kim and J. Cho, J. Water Health, 4, 215 (2006).
- P. Kumari, P. Sharma, S. Srivastava and M.M. Srivastava, Int. J. Miner. Process., 78, 131 (2006); https://doi.org/10.1016/j.minpro.2005.10.001.
- S. Hering, S. Aczel, M. Grabner, F. Doring, S. Berjukow, J. Mitterdorfer, M.J. Sinnegger, J. Striessnig, V.E. Degtiar, Z. Wang and H. Glossmann, J. Biol. Chem., 271, 24471 (1996); https://doi.org/10.1074/jbc.271.40.24471.
- A. Sari, O.D. Uluozlu and M. Tuzen, Chem. Eng. J., 167, 155 (2011); https://doi.org/10.1016/j.cej.2010.12.014.
- V.K. Gupta, A. Rastogi and A. Nayak, J. Colloid Interface Sci., 342, 533 (2010); https://doi.org/10.1016/j.jcis.2009.10.074.
- W.N.L. dos Santos, D.D. Cavalcante, E.G.P. da Silva, C.F. das Virgens and F.S. Dias, Microchem. J., 97, 269 (2011); https://doi.org/10.1016/j.microc.2010.09.014.
- P. Salehi, B. Asghari and F. Mohammadi, J. Water Resource Prot., 2, 701 (2010); https://doi.org/10.4236/jwarp.2010.28080.
- C. Sahu, F. Khan, P.K. Pandey and M. Pandey, Asian J. Chem., 29, 650 (2017); https://doi.org/10.14233/ajchem.2017.20315.
- D. Ranjan, M. Talat and S.H. Hasan, J. Hazard. Mater., 166, 1050 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.013.
- M.S. Rahaman, A. Basu and M.R. Islam, Bioresour. Technol., 99, 2815 (2008); https://doi.org/10.1016/j.biortech.2007.06.038.
- J.A. Baig, T.G. Kazi, A.Q. Shah, G.A. Kandhro, H.I. Afridi, S. Khan and N.F. Kolachi, J. Hazard. Mater., 178, 941 (2010); https://doi.org/10.1016/j.jhazmat.2010.02.028.
- C.T. Kamala, K.H. Chu, N.S. Chary, P.K. Pandey, S.L. Ramesh, A.R.K. Sastry and K.C. Sekhar, Water Res., 39, 2815 (2005); https://doi.org/10.1016/j.watres.2005.04.059.
- Y.H. Wu, S.X. Feng, B. Li and X.M. Mi, World J. Microbiol. Biotechnol., 26, 249 (2010); https://doi.org/10.1007/s11274-009-0167-3.
- A.N.S. Saqib, A. Waseem, A.F. Khan, Q. Mahmood, A. Khan, A. Habib and A.R. Khan, Ecol. Eng., 51, 88 (2013); https://doi.org/10.1016/j.ecoleng.2012.12.063.
- G.M. Gadd, J. Chem. Technol. Biotechnol., 84, 13 (2009); https://doi.org/10.1002/jctb.1999.
- S. Kundu and A.K. Gupta, Chem. Eng. J., 122, 93 (2006); https://doi.org/10.1016/j.cej.2006.06.002.
- O.S. Thirunavukkarasu, T. Viraraghavan, K.S. Subramanian, O. Chaalal and M.R. Islam, Energy Sources, 27, 209 (2005); https://doi.org/10.1080/00908310490448271.
- M.P. Elizalde-González, J. Mattusch, W.-D. Einicke and R. Wennrich, Chem. Eng. J., 81, 187 (2001); https://doi.org/10.1016/S1385-8947(00)00201-1.
- D. Teclu, G. Tivchev, M. Laing and M. Wallis, Water Res., 42, 4885 (2008); https://doi.org/10.1016/j.watres.2008.09.010.
- D. Pokhrel and T. Viraraghavan, J. Hazard. Mater., 150, 818 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.041.
- T.S. Singh and K.K. Pant, Sep. Purif. Technol., 36, 139 (2004); https://doi.org/10.1016/S1383-5866(03)00209-0.
- D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano and H. Gong, J. Colloid Interface Sci., 310, 57 (2007); https://doi.org/10.1016/j.jcis.2007.01.020.
- D. Ranjan, M. Talat and S.H. Hasan, J. Hazard. Mater., 166, 1050 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.013.
- Y. Wu, Y. Wen, J. Zhou, Q. Dai and Y. Wu, Environ. Sci. Pollut. Res. Int., 19, 3371 (2012); https://doi.org/10.1007/s11356-012-0861-9.
References
P.K. Pandey, S. Choubey, Y. Verma, M. Pandey and K. Chandrashekhar, Bioresour. Technol., 100, 634 (2009); https://doi.org/10.1016/j.biortech.2008.07.063.
D. Chakraborti, M.M. Rahman, S. Ahamed, R.N. Dutta, S. Pati and S.C. Mukherjee, Chemosphere, 152, 520 (2016); https://doi.org/10.1016/j.chemosphere.2016.02.119.
D. Bhattacharyya and P.K. Mukherjee, Environ. Geol., 57, 1687 (2009); https://doi.org/10.1007/s00254-008-1450-6.
B. Sen Gupta, S. Chatterjee, U. Rott, H. Kauffman, A. Bandopadhyay, W. DeGroot, N.K. Nag, A.A. Carbonell-Barrachina and S. Mukherjee, Environ. Pollut., 157, 3351 (2009); https://doi.org/10.1016/j.envpol.2009.09.014.
D. Chakraborti, B. Das, M.M. Rahman, U.K. Chowdhury, B. Biswas, A.B. Goswami, B. Nayak, A. Pal, M.K. Sengupta, S. Ahamed, A. Hossain, G. Basu, T. Roychowdhury and D. Das, Mol. Nutr. Food Res., 53, 542 (2009); https://doi.org/10.1002/mnfr.200700517.
P.L. Smedley and D.G. Kinniburgh, Appl. Geochem., 17, 517 (2002); https://doi.org/10.1016/S0883-2927(02)00018-5.
D. Mohan and C.U. Pittman Jr., J. Hazard. Mater., 142, 1 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.006.
B.K. Biswas, J.I. Inoue, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto and H. Kawakita, J. Hazard. Mater., 154, 1066 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.030.
Y.-S. Hong, K.-H. Song and J.-Y. Chung, J. Prev. Med. Public Health, 47, 245 (2014); https://doi.org/10.3961/jpmph.14.035.
J.M. Desesso, C.F. Jacobson, A.R. Scialli, C.H. Farr and J.F. Holson, Reprod. Toxicol., 12, 385 (1998); https://doi.org/10.1016/S0890-6238(98)00021-5.
W. Wang, L. Yang, S. Hou, J. Tan and H. Li, Curr. Sci., 81, 1215 (2001).
H. Xu, S.H. Lam, Y. Shen and Z. Gong, PLoS One, 8, 68737 (2013); https://doi.org/10.1371/journal.pone.0068737.
H. Bolt, Arch. Toxicol., 86, 825 (2012); https://doi.org/10.1007/s00204-012-0866-7.
C.R. Lage, A. Nayak and C.H. Kim, Integr. Comp. Biol., 46, 1040 (2006); https://doi.org/10.1093/icb/icl048.
A.K. Das, Bio-inorganic Chemistry, Books & Allied (P) Ltd., edn 1 (2007).
N. Marchiset-Ferlay, C. Savanovitch and M.P. Sauvant-Rochat, Environ. Int., 39, 150 (2012); https://doi.org/10.1016/j.envint.2011.07.015.
WHO, Arsenic in Drinking Water, Fact Sheet No. 210, Geneva (1999).
F.S. Zhang and H. Itoh, Chemosphere, 60, 319 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.019.
N. Balasubramanian, T. Kojima, C.A. Basha and C. Srinivasakannan, J. Hazard. Mater., 167, 966 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.081.
G. Ghurye, L. Clifford and D.A. Tripp, J. Am. Water Works Assoc., 91, 85 (1999).
S. McNeill and M. Edwards, J. Am. Water Works Assoc., 89, 75 (1997).
D.H. Kim, K.W. Kim and J. Cho, J. Water Health, 4, 215 (2006).
P. Kumari, P. Sharma, S. Srivastava and M.M. Srivastava, Int. J. Miner. Process., 78, 131 (2006); https://doi.org/10.1016/j.minpro.2005.10.001.
S. Hering, S. Aczel, M. Grabner, F. Doring, S. Berjukow, J. Mitterdorfer, M.J. Sinnegger, J. Striessnig, V.E. Degtiar, Z. Wang and H. Glossmann, J. Biol. Chem., 271, 24471 (1996); https://doi.org/10.1074/jbc.271.40.24471.
A. Sari, O.D. Uluozlu and M. Tuzen, Chem. Eng. J., 167, 155 (2011); https://doi.org/10.1016/j.cej.2010.12.014.
V.K. Gupta, A. Rastogi and A. Nayak, J. Colloid Interface Sci., 342, 533 (2010); https://doi.org/10.1016/j.jcis.2009.10.074.
W.N.L. dos Santos, D.D. Cavalcante, E.G.P. da Silva, C.F. das Virgens and F.S. Dias, Microchem. J., 97, 269 (2011); https://doi.org/10.1016/j.microc.2010.09.014.
P. Salehi, B. Asghari and F. Mohammadi, J. Water Resource Prot., 2, 701 (2010); https://doi.org/10.4236/jwarp.2010.28080.
C. Sahu, F. Khan, P.K. Pandey and M. Pandey, Asian J. Chem., 29, 650 (2017); https://doi.org/10.14233/ajchem.2017.20315.
D. Ranjan, M. Talat and S.H. Hasan, J. Hazard. Mater., 166, 1050 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.013.
M.S. Rahaman, A. Basu and M.R. Islam, Bioresour. Technol., 99, 2815 (2008); https://doi.org/10.1016/j.biortech.2007.06.038.
J.A. Baig, T.G. Kazi, A.Q. Shah, G.A. Kandhro, H.I. Afridi, S. Khan and N.F. Kolachi, J. Hazard. Mater., 178, 941 (2010); https://doi.org/10.1016/j.jhazmat.2010.02.028.
C.T. Kamala, K.H. Chu, N.S. Chary, P.K. Pandey, S.L. Ramesh, A.R.K. Sastry and K.C. Sekhar, Water Res., 39, 2815 (2005); https://doi.org/10.1016/j.watres.2005.04.059.
Y.H. Wu, S.X. Feng, B. Li and X.M. Mi, World J. Microbiol. Biotechnol., 26, 249 (2010); https://doi.org/10.1007/s11274-009-0167-3.
A.N.S. Saqib, A. Waseem, A.F. Khan, Q. Mahmood, A. Khan, A. Habib and A.R. Khan, Ecol. Eng., 51, 88 (2013); https://doi.org/10.1016/j.ecoleng.2012.12.063.
G.M. Gadd, J. Chem. Technol. Biotechnol., 84, 13 (2009); https://doi.org/10.1002/jctb.1999.
S. Kundu and A.K. Gupta, Chem. Eng. J., 122, 93 (2006); https://doi.org/10.1016/j.cej.2006.06.002.
O.S. Thirunavukkarasu, T. Viraraghavan, K.S. Subramanian, O. Chaalal and M.R. Islam, Energy Sources, 27, 209 (2005); https://doi.org/10.1080/00908310490448271.
M.P. Elizalde-González, J. Mattusch, W.-D. Einicke and R. Wennrich, Chem. Eng. J., 81, 187 (2001); https://doi.org/10.1016/S1385-8947(00)00201-1.
D. Teclu, G. Tivchev, M. Laing and M. Wallis, Water Res., 42, 4885 (2008); https://doi.org/10.1016/j.watres.2008.09.010.
D. Pokhrel and T. Viraraghavan, J. Hazard. Mater., 150, 818 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.041.
T.S. Singh and K.K. Pant, Sep. Purif. Technol., 36, 139 (2004); https://doi.org/10.1016/S1383-5866(03)00209-0.
D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano and H. Gong, J. Colloid Interface Sci., 310, 57 (2007); https://doi.org/10.1016/j.jcis.2007.01.020.
D. Ranjan, M. Talat and S.H. Hasan, J. Hazard. Mater., 166, 1050 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.013.
Y. Wu, Y. Wen, J. Zhou, Q. Dai and Y. Wu, Environ. Sci. Pollut. Res. Int., 19, 3371 (2012); https://doi.org/10.1007/s11356-012-0861-9.