Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Gold Nanoparticles Using Cinnamomum verum, Syzygium aromaticum and Piper nigrum Extract
Corresponding Author(s) : M. Sharma
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Recently, nanoparticles have gained significance in the field of biomedicines but use of the chemical reducing agent in their preparation, limit it in the field of biomedicine. Hence, we have synthesized gold nanoparticles (AuNPs) by stirring the appropriate volume of aqueous extract of Cinnamomum verum (dried bark), Syzygium aromaticum (dried flower buds) and Piper nigrum (dried berries) with aqueous solution of chloroauric acid (Au3+) by greener method. The UV-visible spectrum of AuNPs showed a broad band in the region 543-546 nm corresponding to the surface plasmon resonance band (SPR) of AuNPs. The position of band did not change even after 2 weeks, depicting the stability of prepared nanoparticles. FESEM and DLS confirmed their size and dispersity. Furthermore, the rate of formation of nanoparticles using different spice extracts as reducing agent give an indication towards the concentration of active components present in them i.e. Syzygium aromaticum is the better reducing agent as compared to Cinnamomum verum and Piper nigrum.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Freestone, N. Meeks, M. Sax and C. Higgitt, Gold Bull., 40, 270 (2007); https://doi.org/10.1007/BF03215599.
- D.A. Atwood, Sustainable Inorganic Chemistry, John Wiley & Sons: New York, United States (2016).
- W. Caseri, Macromol. Rapid Commun., 21, 705 (2000); https://doi.org/10.1002/1521-3927(20000701)21:11<705::AIDMARC705>3.0.CO;2-3.
- J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Farad. Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055.
- G. Frens, Nat. Phys. Sci. (Lond.), 241, 20 (1973); https://doi.org/10.1038/physci241020a0.
- K. Okitsu, Y. Mizukoshi, T.A. Yamamoto, Y. Maeda and Y. Nagata, Mater. Lett., 61, 3429 (2007); https://doi.org/10.1016/j.matlet.2006.11.090.
- A. Plech, V. Kotaidis, A. Siems and M. Sztucki, Phys. Chem. Chem. Phys., 10, 3888 (2008).
- N.S. Yusof and M. Ashok Kumar, ChemPhysChem, 16, 775 (2015); https://doi.org/10.1002/cphc.201402697.
- A.N. Madu, P.C. Njoku, G.A. Iwuoha and U.M. Agbasi, Int. J. Phys. Sci., 6, 635 (2011).
- K. Wani, A. Choudhari, R. Chikate and R.K. Ghanekar, Carbon Sci. Technol. (Paris), 5, 203 (2013).
- K.D. Arunachalam, S.K. Annamalai and S. Hari, Int. J. Nanomedicine, 8, 1307 (2013); https://doi.org/10.2147/IJN.S36670.
- S.A. Aromal, V.K. Vidhu and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 99 (2012); https://doi.org/10.1016/j.saa.2011.09.035.
- A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003.
- N. Pantidos and L. Horsfall, J. Nanomed. Nanotechnol., 5, 233 (2014); https://doi.org/10.4172/2157-7439.1000233.
- X. Li, H. Xu, Z.S. Chen and G. Chen, J. Nanomater., 2011, 1 (2011).
- U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, Adv. Colloid Interface Sci., 209, 40 (2014); https://doi.org/10.1016/j.cis.2013.12.011.
- R. Ramanathan, M.R. Field, A.P. O’Mullane, P.M. Smooker, S.K. Bhargava and V. Bansal, Nanoscale, 5, 2300 (2013); https://doi.org/10.1039/C2NR32887A.
- M.I. Nassar, A.H. Gaara, A.H. El-Ghorab, A.-R.H. Farrag, H. Shen, E. Huq and T.J. Mabry, Rev. Latinoam. Quím., 35, 47 (2007).
- P.A. Paranagama, S. Wimalasena, G.S. Jayatilake, A.L. Jayawardena, U.M. Senanayake and A.M. Mubarak, J. Natl. Sci. Found. Sri Lanka, 29, 147 (2001).
- M. Meghwal and T.K. Goswami, Scient. Rep., 1, 172 (2012); https://doi.org/10.4172/scientificreports.172.
- K. Lata, A.K. Jaiswal, L. Naik and R. Sharma, Nano Trends: J. Nanotechnol. Appl., 17, 1 (2015).
- M. Sharma, M. Pathak, B. Roy, A. Chand, G. Dhanda, N. Abbasi and G. Panchal, J. Mater. Nanosci., 3, 8 (2016).
- I.V. Safenkova, A.V. Zherdev and B.B. Dzantiev, J. Immunol. Methods, 357, 17 (2010); https://doi.org/10.1016/j.jim.2010.03.010.
- P. Zhou, Y. Lu, J. Zhu, J. Hong, B. Li, J. Zhou, D. Gong and A. Montoya, J. Agric. Food Chem., 52, 4355 (2004); https://doi.org/10.1021/jf0499121.
- S. Eustis and M.A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006); https://doi.org/10.1039/B514191E.
- X. Huang and M.A. El-Sayed, J. Adv. Res., 1, 13 (2010); https://doi.org/10.1016/j.jare.2010.02.002.
- H. Verma, P. Singh and R.M. Chavan, Vet. World, 7, 72 (2014); https://doi.org/10.14202/vetworld.2014.72-77.
- S. Link and M.A. El-Sayed, J. Phys. Chem. B, 103, 4212 (1999); https://doi.org/10.1021/jp984796o.
References
I. Freestone, N. Meeks, M. Sax and C. Higgitt, Gold Bull., 40, 270 (2007); https://doi.org/10.1007/BF03215599.
D.A. Atwood, Sustainable Inorganic Chemistry, John Wiley & Sons: New York, United States (2016).
W. Caseri, Macromol. Rapid Commun., 21, 705 (2000); https://doi.org/10.1002/1521-3927(20000701)21:11<705::AIDMARC705>3.0.CO;2-3.
J. Turkevich, P.C. Stevenson and J. Hillier, Discuss. Farad. Soc., 11, 55 (1951); https://doi.org/10.1039/df9511100055.
G. Frens, Nat. Phys. Sci. (Lond.), 241, 20 (1973); https://doi.org/10.1038/physci241020a0.
K. Okitsu, Y. Mizukoshi, T.A. Yamamoto, Y. Maeda and Y. Nagata, Mater. Lett., 61, 3429 (2007); https://doi.org/10.1016/j.matlet.2006.11.090.
A. Plech, V. Kotaidis, A. Siems and M. Sztucki, Phys. Chem. Chem. Phys., 10, 3888 (2008).
N.S. Yusof and M. Ashok Kumar, ChemPhysChem, 16, 775 (2015); https://doi.org/10.1002/cphc.201402697.
A.N. Madu, P.C. Njoku, G.A. Iwuoha and U.M. Agbasi, Int. J. Phys. Sci., 6, 635 (2011).
K. Wani, A. Choudhari, R. Chikate and R.K. Ghanekar, Carbon Sci. Technol. (Paris), 5, 203 (2013).
K.D. Arunachalam, S.K. Annamalai and S. Hari, Int. J. Nanomedicine, 8, 1307 (2013); https://doi.org/10.2147/IJN.S36670.
S.A. Aromal, V.K. Vidhu and D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 99 (2012); https://doi.org/10.1016/j.saa.2011.09.035.
A.K. Mittal, Y. Chisti and U.C. Banerjee, Biotechnol. Adv., 31, 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003.
N. Pantidos and L. Horsfall, J. Nanomed. Nanotechnol., 5, 233 (2014); https://doi.org/10.4172/2157-7439.1000233.
X. Li, H. Xu, Z.S. Chen and G. Chen, J. Nanomater., 2011, 1 (2011).
U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, Adv. Colloid Interface Sci., 209, 40 (2014); https://doi.org/10.1016/j.cis.2013.12.011.
R. Ramanathan, M.R. Field, A.P. O’Mullane, P.M. Smooker, S.K. Bhargava and V. Bansal, Nanoscale, 5, 2300 (2013); https://doi.org/10.1039/C2NR32887A.
M.I. Nassar, A.H. Gaara, A.H. El-Ghorab, A.-R.H. Farrag, H. Shen, E. Huq and T.J. Mabry, Rev. Latinoam. Quím., 35, 47 (2007).
P.A. Paranagama, S. Wimalasena, G.S. Jayatilake, A.L. Jayawardena, U.M. Senanayake and A.M. Mubarak, J. Natl. Sci. Found. Sri Lanka, 29, 147 (2001).
M. Meghwal and T.K. Goswami, Scient. Rep., 1, 172 (2012); https://doi.org/10.4172/scientificreports.172.
K. Lata, A.K. Jaiswal, L. Naik and R. Sharma, Nano Trends: J. Nanotechnol. Appl., 17, 1 (2015).
M. Sharma, M. Pathak, B. Roy, A. Chand, G. Dhanda, N. Abbasi and G. Panchal, J. Mater. Nanosci., 3, 8 (2016).
I.V. Safenkova, A.V. Zherdev and B.B. Dzantiev, J. Immunol. Methods, 357, 17 (2010); https://doi.org/10.1016/j.jim.2010.03.010.
P. Zhou, Y. Lu, J. Zhu, J. Hong, B. Li, J. Zhou, D. Gong and A. Montoya, J. Agric. Food Chem., 52, 4355 (2004); https://doi.org/10.1021/jf0499121.
S. Eustis and M.A. El-Sayed, Chem. Soc. Rev., 35, 209 (2006); https://doi.org/10.1039/B514191E.
X. Huang and M.A. El-Sayed, J. Adv. Res., 1, 13 (2010); https://doi.org/10.1016/j.jare.2010.02.002.
H. Verma, P. Singh and R.M. Chavan, Vet. World, 7, 72 (2014); https://doi.org/10.14202/vetworld.2014.72-77.
S. Link and M.A. El-Sayed, J. Phys. Chem. B, 103, 4212 (1999); https://doi.org/10.1021/jp984796o.