Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Characterization of Allophane from Gamalama Volcanic Soil, North Maluku, Indonesia
Corresponding Author(s) : Indra Cipta
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
Extraction of allophane particles from Gamalama volcanic soil have been performed and characterized by using FTIR, XRD, SEM-EDX and TEM. Gamalama volcanic soil sample was dried in air for 5 days and crushed into 200 mesh particle size. The sample is then treated with 10 % H2O2 and dispered at pH 10 by addition of 2 M NaOH. Colloid layer about 10 cm from the surface of the solution was taken after decanted for 10-20 h. Allophane were collected by centrifuge. The FTIR spectra shows peaks which are vibration characteristic of alluminosilicate. X-ray diffraction result proved that allophane is non-crystalline aluminosilicate mineral. TEM result has confirmed that the resulted allophane is spherule with diameter about 4 nm. The nature of allophane to form globular aggregates has confirmed by SEM. In the isolated allophane, Si/Al ratio is 1.45.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin and J.R. Lead, Environ. Toxicol. Chem., 27, 1825 (2008); https://doi.org/10.1897/08-090.1.
- G. Yuan, J. Environ. Sci. Health A, 39, 2545 (2004); https://doi.org/10.1081/ESE-200027009.
- Z. Abidin, N. Matsue and T. Henmi, Clays Clay Miner., 55, 443 (2007); https://doi.org/10.1346/CCMN.2007.0550410.
- M. Calabi-Floody, J.S. Bendall, A.A. Jara, M.E. Welland, B.K.G. Theng, C. Rumpel and M.L. Mora, Geoderma, 161, 159 (2011); https://doi.org/10.1016/j.geoderma.2010.12.013.
- F. Iyoda, S. Hayashi, S. Arakawa, B. John, M. Okamoto, H. Hayashi and G. Yuan, Appl. Clay Sci., 56, 77 (2012); https://doi.org/10.1016/j.clay.2011.11.025.
- T. Henmi and K. Wada, Am. Mineral., 61, 379 (1976).
- Z. Haque, V. Ali and M. Husain, Optik, 124, 4287 (2013); https://doi.org/10.1016/j.ijleo.2013.01.043.
- M.S. Khalil, L.A. Elkabee and B. Murphy, J. Colloid Interface Sci., 287, 534 (2005); https://doi.org/10.1016/j.jcis.2005.02.041.
- L. Reinert, F. Ohashi, M. Kehal, J.-L. Bantignies, C. Goze-Bac and L. Duclaux, Appl. Clay Sci., 54, 274 (2011); https://doi.org/10.1016/j.clay.2011.10.002.
- C. Kang, L. Jing, T. Guo, H. Cui, J. Zhou and H. Fu, J. Phys. Chem. C, 113, 1006 (2009); https://doi.org/10.1021/jp807552u.
- J. Madejova, M. Janek, P. Komadel, H.J. Herbert and M.C. Moog, Appl. Clay Sci., 20, 255 (2002); https://doi.org/10.1016/S0169-1317(01)00067-9.
- H. Maeda, Y. Hashimoto and E.H. Ishida, Appl. Clay Sci., 44, 71 (2009); https://doi.org/10.1016/j.clay.2009.01.013.
- R.L. Parfitt, Aust. J. Soil Res., 28, 343 (1990); https://doi.org/10.1071/SR9900343.
- M.C. Floody, B.K.G. Theng and M.L. Mora, Clay Miner., 44, 161 (2009); https://doi.org/10.1180/claymin.2009.044.2.161.
- B. Creton, D. Bougeard, K.S. Smirnov, J. Guilment and O. Poncelet, J. Phys. Chem. C, 112, 358 (2008); https://doi.org/10.1021/jp0738412.
- E.G. Garrido-Ramirez, B.K.G. Theng and M.L. Mora, Appl. Clay Sci., 47, 182 (2010); https://doi.org/10.1016/j.clay.2009.11.044
References
S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin and J.R. Lead, Environ. Toxicol. Chem., 27, 1825 (2008); https://doi.org/10.1897/08-090.1.
G. Yuan, J. Environ. Sci. Health A, 39, 2545 (2004); https://doi.org/10.1081/ESE-200027009.
Z. Abidin, N. Matsue and T. Henmi, Clays Clay Miner., 55, 443 (2007); https://doi.org/10.1346/CCMN.2007.0550410.
M. Calabi-Floody, J.S. Bendall, A.A. Jara, M.E. Welland, B.K.G. Theng, C. Rumpel and M.L. Mora, Geoderma, 161, 159 (2011); https://doi.org/10.1016/j.geoderma.2010.12.013.
F. Iyoda, S. Hayashi, S. Arakawa, B. John, M. Okamoto, H. Hayashi and G. Yuan, Appl. Clay Sci., 56, 77 (2012); https://doi.org/10.1016/j.clay.2011.11.025.
T. Henmi and K. Wada, Am. Mineral., 61, 379 (1976).
Z. Haque, V. Ali and M. Husain, Optik, 124, 4287 (2013); https://doi.org/10.1016/j.ijleo.2013.01.043.
M.S. Khalil, L.A. Elkabee and B. Murphy, J. Colloid Interface Sci., 287, 534 (2005); https://doi.org/10.1016/j.jcis.2005.02.041.
L. Reinert, F. Ohashi, M. Kehal, J.-L. Bantignies, C. Goze-Bac and L. Duclaux, Appl. Clay Sci., 54, 274 (2011); https://doi.org/10.1016/j.clay.2011.10.002.
C. Kang, L. Jing, T. Guo, H. Cui, J. Zhou and H. Fu, J. Phys. Chem. C, 113, 1006 (2009); https://doi.org/10.1021/jp807552u.
J. Madejova, M. Janek, P. Komadel, H.J. Herbert and M.C. Moog, Appl. Clay Sci., 20, 255 (2002); https://doi.org/10.1016/S0169-1317(01)00067-9.
H. Maeda, Y. Hashimoto and E.H. Ishida, Appl. Clay Sci., 44, 71 (2009); https://doi.org/10.1016/j.clay.2009.01.013.
R.L. Parfitt, Aust. J. Soil Res., 28, 343 (1990); https://doi.org/10.1071/SR9900343.
M.C. Floody, B.K.G. Theng and M.L. Mora, Clay Miner., 44, 161 (2009); https://doi.org/10.1180/claymin.2009.044.2.161.
B. Creton, D. Bougeard, K.S. Smirnov, J. Guilment and O. Poncelet, J. Phys. Chem. C, 112, 358 (2008); https://doi.org/10.1021/jp0738412.
E.G. Garrido-Ramirez, B.K.G. Theng and M.L. Mora, Appl. Clay Sci., 47, 182 (2010); https://doi.org/10.1016/j.clay.2009.11.044