Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Feasibility of Room Temperature Reduction of Aromatic Carbonyl and Nitro Compounds by Zn/dil. HCl-Et2O System: An Experimental and DFT Study
Corresponding Author(s) : S. Rajamathe
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
This experimental study is about the feasibility of the room temperature reduction of the ether soluble aromatic carbonyl/nitro compounds by atomic hydrogen. The atomic hydrogen is produced by the novel Zn/dil. HCl-Et2O reducing system (wherein dil. HCl is slowly added to the ethereal solution of Zn and substrate).This study resulted in single or mixture of anticipated reduced products in different yields. The DFT study with B3LYP/6.311g ++ (d,p) basis set revealed that the stability of the first formed free radical (energy factor) and the homo nuclear nature of the carbonyl and nitro group (charge factor) decide the yield. It is also found that the presence of –M group at o- or p- position to the carbonyl/nitro group results in the favourable modification of above-mentioned factors. The above-mentioned factors also explain the preferential reduction of nitro group when it is present along with carbonyl group. The free radical mechanism was confirmed by the formation of pinacol coupled product in one instance. In one of the reduction reactions, an unreported compound viz. the dimer of o-amino benzaldehyde was obtained in good yield.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.D. Burke and R.L. Danheiser, Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents, Wiley-VCH: New York (1999).
- F. Yuste, M. Saldana and F. Walls, Tetrahedron Lett., 23, 147 (1982); https://doi.org/10.1016/S0040-4039(00)86770-2.
- R.E. Lyle and J.L. LaMattina, Synthesis, 726 (1974); https://doi.org/10.1055/s-1974-23423.
- R.S. Dhillon, Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1]nonan (9-BBN), Springer: Germany (2007).
- S.H. Lee, M.H. Nam, M.Y. Cho, B.W. Yoo, H.J. Rhee and C.M. Yoon, Synth. Commun., 36, 2469 (2006); https://doi.org/10.1080/00397910600781224.
- A.Z. Halimjani and M.R. Saidi, Synth. Commun., 35, 2271 (2005); https://doi.org/10.1080/00397910500186177.
- B. Zeynizadeh and S. Yahyaei, Bull. Korean Chem. Soc., 24, 1664 (2003); https://doi.org/10.5012/bkcs.2003.24.11.1664.
- B. Uysal and B.S. Oksal, J. Chem. Sci., 123, 681 (2011); https://doi.org/10.1007/s12039-011-0116-1.
- S. Chandrasekhar, S.J. Prakash and C.L. Rao, J. Org. Chem., 71, 2196 (2006); https://doi.org/10.1021/jo052604x.
- D. Lee, D. Kim and J. Yun, Angew. Chem. Int. Ed., 45, 2785 (2006); https://doi.org/10.1002/anie.200600184.
- SDBSWeb, http://riodb01.ibase.aist.go.jp/sdbs/National Institute of Advanced Industrial Science and Technology.
- (a) N.J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings Publishing Co. Menlo Park (1978). (b) J.N.J. Pitts Jr., R.L. Letsinger, R.P. Taylor, J.M. Patterson, G. Recktenwald and R.B. Martin, J. Am. Chem. Soc., 81, 1068 (1959); https://doi.org/10.1021/ja01514a014. (c) A. Demeter, B. László and T. Bérces, Ber. Bunsenges. Phys. Chem, 92, 1478 (1988); https://doi.org/10.1002/bbpc.198800355.
- S. Liu, Y. Wang, X. Yang and J. Jiang, Res. Chem. Intermed., 38, 2471 (2012); https://doi.org/10.1007/s11164-012-0562-5.
References
S.D. Burke and R.L. Danheiser, Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing Agents, Wiley-VCH: New York (1999).
F. Yuste, M. Saldana and F. Walls, Tetrahedron Lett., 23, 147 (1982); https://doi.org/10.1016/S0040-4039(00)86770-2.
R.E. Lyle and J.L. LaMattina, Synthesis, 726 (1974); https://doi.org/10.1055/s-1974-23423.
R.S. Dhillon, Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1]nonan (9-BBN), Springer: Germany (2007).
S.H. Lee, M.H. Nam, M.Y. Cho, B.W. Yoo, H.J. Rhee and C.M. Yoon, Synth. Commun., 36, 2469 (2006); https://doi.org/10.1080/00397910600781224.
A.Z. Halimjani and M.R. Saidi, Synth. Commun., 35, 2271 (2005); https://doi.org/10.1080/00397910500186177.
B. Zeynizadeh and S. Yahyaei, Bull. Korean Chem. Soc., 24, 1664 (2003); https://doi.org/10.5012/bkcs.2003.24.11.1664.
B. Uysal and B.S. Oksal, J. Chem. Sci., 123, 681 (2011); https://doi.org/10.1007/s12039-011-0116-1.
S. Chandrasekhar, S.J. Prakash and C.L. Rao, J. Org. Chem., 71, 2196 (2006); https://doi.org/10.1021/jo052604x.
D. Lee, D. Kim and J. Yun, Angew. Chem. Int. Ed., 45, 2785 (2006); https://doi.org/10.1002/anie.200600184.
SDBSWeb, http://riodb01.ibase.aist.go.jp/sdbs/National Institute of Advanced Industrial Science and Technology.
(a) N.J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings Publishing Co. Menlo Park (1978). (b) J.N.J. Pitts Jr., R.L. Letsinger, R.P. Taylor, J.M. Patterson, G. Recktenwald and R.B. Martin, J. Am. Chem. Soc., 81, 1068 (1959); https://doi.org/10.1021/ja01514a014. (c) A. Demeter, B. László and T. Bérces, Ber. Bunsenges. Phys. Chem, 92, 1478 (1988); https://doi.org/10.1002/bbpc.198800355.
S. Liu, Y. Wang, X. Yang and J. Jiang, Res. Chem. Intermed., 38, 2471 (2012); https://doi.org/10.1007/s11164-012-0562-5.