Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synchrotron X-Ray Diffraction Study of BaPb1-xSnxO3 Solid Solution
Corresponding Author(s) : A.K. Prodjosantoso
Asian Journal of Chemistry,
Vol. 29 No. 8 (2017): Vol 29 Issue 8
Abstract
The structures of BaPb1-xSnxO3 (x = 0, 0.025, 0.05 and 0.075) have been established from high resolution synchrotron X-ray powder diffraction. These solid solutions are all isostructural and the structures have been refined in the orthorombic space group, Imma. In all cases the BaO octahedral layers are separated by Pb/SnO6 layers. As expected on size arguments, the cell parameters decrease as the amounts of Sn increases due the size effects of the dopant cation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Weiss, C.R. Acad. Sci., 246, 3073 (1958).
- D.E. Cox and A.W. Sleight, ERDA Energy Res. Abstr., 2, 7623 (1977).
- D.T. Marx, P.G. Radaelli, J.D. Jorgensen, R.L. Hitterman, D.G. Hinks, S. Pei and B. Dabrowski, Phys. Rev. B, 46, 1144 (1992); https://doi.org/10.1103/PhysRevB.46.1144.
- S.M. Moussa, B.J. Kennedy and T. Vogt, Solid State Commun., 119, 549 (2001); https://doi.org/10.1016/S0038-1098(01)00265-4.
- W.T. Fu, D. Visser, K.S. Knight and D.J.W. IJdo, J. Solid State Chem., 180, 1559 (2007); https://doi.org/10.1016/j.jssc.2007.03.009.
- P. Giraldo-Gallo, H. Lee, Y. Zhang, M.J. Kramer, M.R. Beasley, T.H. Geballe and I.R. Fisher, Phys. Rev. B, 85, 174503 (2012); https://doi.org/10.1103/PhysRevB.85.174503.
- M.J. Pacheco, F. Regalado, D. Santos, L. Ciríaco and A. Lopes, J. Electrochem. Soc., 161, H474 (2014) https://doi.org/10.1149/2.0391409jes.
- C.S. Liang, J.M. Wu and M.C. Chang, Appl. Phys. Lett., 81, 3624 (2002); https://doi.org/10.1063/1.1520332.
- M. Yasukawa and T. Kono, J. Alloys Comp., 426, 420 (2006); https://doi.org/10.1016/j.jallcom.2006.03.098.
- Y. Guo and H. Liu, J. Power Sources, 183, 381 (2008); https://doi.org/10.1016/j.jpowsour.2008.04.092.
- A. Franz, D. Klimm, W. Schmitz, I. Haferkorn and K. Bente, Cryst. Res. Technol., 46, 906 (2011); https://doi.org/10.1002/crat.201000207.
- Y.H. Hsieh and S.L. Fu, Ceram. Int., 18, 289 (1992); https://doi.org/10.1016/0272-8842(92)90076-P.
- D.J. Payne, R.G. Egdell, W. Hao, J.S. Foord, A. Walsh and G.W. Watson, Chem. Phys. Lett., 411, 181 (2005); https://doi.org/10.1016/j.cplett.2005.06.023.
- D.J. Payne, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Beamson, A. Fondacaro, G. Monaco, G. Vanko and R.G. Egdell, J. Electron Spectrosc. Relat. Phenom., 169, 26 (2009); https://doi.org/10.1016/j.elspec.2008.10.002.
- D.J. Payne, R.G. Egdell, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G.W. Watson, J. Guo, G. Beamson, P.-A. Glans, T. Learmonth and K.E. Smith, Phys. Rev. B, 75, 153102 (2007); https://doi.org/10.1103/PhysRevB.75.153102.
- M. Heinemann, H.J. Terpstra, C. Haas and R.A. de Groot, Phys. Rev. B, 52, 11740 (1995); https://doi.org/10.1103/PhysRevB.52.11740.
- M. Magnuson, T. Schmitt, V.N. Strocov, J. Schlappa, A.S. Kalabukhov and L.C. Duda, Sci. Rep., 4, 7017 (2015); https://doi.org/10.1038/srep07017.
- A.G. Mamalis, S.G. Ovchinnikov, M.I. Petrov, D.A. Balaev, K.A. Shaihutdinov, D.M. Gohfeld, S.A. Kharlamova and I.N. Vottea, Physica C, 364–365, 174 (2001); https://doi.org/10.1016/S0921-4534(01)00749-3.
- V.R.R. Medicherla, T. Shripathi and N.P. Lalla, J. Phys. Condens. Matter, 20, 35219 (2008); https://doi.org/10.1088/0953-8984/20/03/035219.
- A.B. Velichenko, R. Amadelli, A. Benedetti, D.V. Girenko, S.V. Kovalyov and F.I. Danilov, J. Electrochem. Soc., 149, C445 (2002); https://doi.org/10.1149/1.1495498.
- H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem and M. El Marssi, Solid State Commun., 201, 64 (2015); https://doi.org/10.1016/j.ssc.2014.10.003.
- Y. Yuan, Z. Zhao, J. Zheng, M. Yang, L. Qiu, Z. Li and Z. Zou, J. Mater. Chem., 20, 6772 (2010); https://doi.org/10.1039/c0jm00455c.
- W.T. Fu and D.J.W. IJdo, J. Solid State Chem., 178, 2363 (2005); https://doi.org/10.1016/j.jssc.2005.05.021.
- K.S. Wallwork, B.J. Kennedy and D. Wang, AIP Conf. Proc., 879, 879 (2007); https://doi.org/10.1063/1.2436201.
- C.J. Howard and B.A. Hunter, A Computer Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, Lucas Heights Research Laboratories, New South Wales, Australia, pp. 1-27 (1998).
- R.P. Burbank, J. Appl. Cryst., 3, 112 (1970); https://doi.org/10.1107/S0021889870005794.
- J. Shi and L. Guo, Progr. Nat. Sci.: Mater. Int., 22, 592 (2012); https://doi.org/10.1016/j.pnsc.2012.12.002.
- D.E. Cox and A.W. Sleight, in ed: R.M. Moon, Proceedings of the Conference on Neutron Scattering, Gatlinburg, National Technical Information Service, Springfield, VA, USA, p. 45 (1976).
- J.E. Greedan, K.L. Willmer and H.F. Gibbs, Eur. J. Solid State Chem., 29, 505 (1992).
- W.T. Fua, M.J. Polderman and F.M. Mulder, Mater. Res. Bull., 35, 1205 (2000); https://doi.org/10.1016/S0025-5408(00)00332-9.
- R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551.
References
R. Weiss, C.R. Acad. Sci., 246, 3073 (1958).
D.E. Cox and A.W. Sleight, ERDA Energy Res. Abstr., 2, 7623 (1977).
D.T. Marx, P.G. Radaelli, J.D. Jorgensen, R.L. Hitterman, D.G. Hinks, S. Pei and B. Dabrowski, Phys. Rev. B, 46, 1144 (1992); https://doi.org/10.1103/PhysRevB.46.1144.
S.M. Moussa, B.J. Kennedy and T. Vogt, Solid State Commun., 119, 549 (2001); https://doi.org/10.1016/S0038-1098(01)00265-4.
W.T. Fu, D. Visser, K.S. Knight and D.J.W. IJdo, J. Solid State Chem., 180, 1559 (2007); https://doi.org/10.1016/j.jssc.2007.03.009.
P. Giraldo-Gallo, H. Lee, Y. Zhang, M.J. Kramer, M.R. Beasley, T.H. Geballe and I.R. Fisher, Phys. Rev. B, 85, 174503 (2012); https://doi.org/10.1103/PhysRevB.85.174503.
M.J. Pacheco, F. Regalado, D. Santos, L. Ciríaco and A. Lopes, J. Electrochem. Soc., 161, H474 (2014) https://doi.org/10.1149/2.0391409jes.
C.S. Liang, J.M. Wu and M.C. Chang, Appl. Phys. Lett., 81, 3624 (2002); https://doi.org/10.1063/1.1520332.
M. Yasukawa and T. Kono, J. Alloys Comp., 426, 420 (2006); https://doi.org/10.1016/j.jallcom.2006.03.098.
Y. Guo and H. Liu, J. Power Sources, 183, 381 (2008); https://doi.org/10.1016/j.jpowsour.2008.04.092.
A. Franz, D. Klimm, W. Schmitz, I. Haferkorn and K. Bente, Cryst. Res. Technol., 46, 906 (2011); https://doi.org/10.1002/crat.201000207.
Y.H. Hsieh and S.L. Fu, Ceram. Int., 18, 289 (1992); https://doi.org/10.1016/0272-8842(92)90076-P.
D.J. Payne, R.G. Egdell, W. Hao, J.S. Foord, A. Walsh and G.W. Watson, Chem. Phys. Lett., 411, 181 (2005); https://doi.org/10.1016/j.cplett.2005.06.023.
D.J. Payne, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Beamson, A. Fondacaro, G. Monaco, G. Vanko and R.G. Egdell, J. Electron Spectrosc. Relat. Phenom., 169, 26 (2009); https://doi.org/10.1016/j.elspec.2008.10.002.
D.J. Payne, R.G. Egdell, G. Paolicelli, F. Offi, G. Panaccione, P. Lacovig, G. Monaco, G. Vanko, A. Walsh, G.W. Watson, J. Guo, G. Beamson, P.-A. Glans, T. Learmonth and K.E. Smith, Phys. Rev. B, 75, 153102 (2007); https://doi.org/10.1103/PhysRevB.75.153102.
M. Heinemann, H.J. Terpstra, C. Haas and R.A. de Groot, Phys. Rev. B, 52, 11740 (1995); https://doi.org/10.1103/PhysRevB.52.11740.
M. Magnuson, T. Schmitt, V.N. Strocov, J. Schlappa, A.S. Kalabukhov and L.C. Duda, Sci. Rep., 4, 7017 (2015); https://doi.org/10.1038/srep07017.
A.G. Mamalis, S.G. Ovchinnikov, M.I. Petrov, D.A. Balaev, K.A. Shaihutdinov, D.M. Gohfeld, S.A. Kharlamova and I.N. Vottea, Physica C, 364–365, 174 (2001); https://doi.org/10.1016/S0921-4534(01)00749-3.
V.R.R. Medicherla, T. Shripathi and N.P. Lalla, J. Phys. Condens. Matter, 20, 35219 (2008); https://doi.org/10.1088/0953-8984/20/03/035219.
A.B. Velichenko, R. Amadelli, A. Benedetti, D.V. Girenko, S.V. Kovalyov and F.I. Danilov, J. Electrochem. Soc., 149, C445 (2002); https://doi.org/10.1149/1.1495498.
H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem and M. El Marssi, Solid State Commun., 201, 64 (2015); https://doi.org/10.1016/j.ssc.2014.10.003.
Y. Yuan, Z. Zhao, J. Zheng, M. Yang, L. Qiu, Z. Li and Z. Zou, J. Mater. Chem., 20, 6772 (2010); https://doi.org/10.1039/c0jm00455c.
W.T. Fu and D.J.W. IJdo, J. Solid State Chem., 178, 2363 (2005); https://doi.org/10.1016/j.jssc.2005.05.021.
K.S. Wallwork, B.J. Kennedy and D. Wang, AIP Conf. Proc., 879, 879 (2007); https://doi.org/10.1063/1.2436201.
C.J. Howard and B.A. Hunter, A Computer Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, Lucas Heights Research Laboratories, New South Wales, Australia, pp. 1-27 (1998).
R.P. Burbank, J. Appl. Cryst., 3, 112 (1970); https://doi.org/10.1107/S0021889870005794.
J. Shi and L. Guo, Progr. Nat. Sci.: Mater. Int., 22, 592 (2012); https://doi.org/10.1016/j.pnsc.2012.12.002.
D.E. Cox and A.W. Sleight, in ed: R.M. Moon, Proceedings of the Conference on Neutron Scattering, Gatlinburg, National Technical Information Service, Springfield, VA, USA, p. 45 (1976).
J.E. Greedan, K.L. Willmer and H.F. Gibbs, Eur. J. Solid State Chem., 29, 505 (1992).
W.T. Fua, M.J. Polderman and F.M. Mulder, Mater. Res. Bull., 35, 1205 (2000); https://doi.org/10.1016/S0025-5408(00)00332-9.
R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551.