Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Determination of Cr(III) in Industrial Effluents by Zinc Oxide-Tin(IV) Antimonophosphate Nanocomposite Based Ion Selective Electrode
Corresponding Author(s) : Pritpal Singh
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
This investigation focuses on trace level determination of chromium(III) ions in industrial effluents by a novel zinc oxide-tin(IV) antimono-phosphate nanocomposite based ion selective electrode. The distribution studies confirmed the high selectivity of the nanocomposite material for Cr(III) ions which was thus used as an electroactive material for fabrication of Cr(III) selective electrode. The material was characterized by FTIR, X-ray, SEM, TEM, EDX and TGA techniques. The membrane sensor exhibits a stable sub-Nernstian response to chromium(III) ions over a wide concentration range of 1 × 10-7 to 1 × 10-2 M in the pH range 2.0-8.5. The dynamic response time, limit of detection, life span and slope of the proposed sensor were 12 s, 1.0 × 10-8 M, 4 months and 15 mV/decade, respectively. The proposed sensor was successfully used for estimation of the activity of Cr(III) ions in electroplating and leather tannery effluents. The results obtained were validated by comparison with those obtained by UV-visible spectrophotometric and atomic absorption spectrometric techniques. The analytical utility of the proposed sensor was established by potentiometric titration of Cr(III) ions with EDTA solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Anderson, N. Cheng, N.A. Bryden, M.M. Polansky, N. Cheng, J. Chi and J. Feng, Diabetes, 46, 1786 (1997); https://doi.org/10.2337/diab.46.11.1786.
- J.L. Wang and D. Lai, J. Affect. Disord., 110, 191 (2008); https://doi.org/10.1016/j.jad.2008.01.005.
- W.T. Cefalu and F.B. Hu, Diabetes Care, 27, 2741 (2004); https://doi.org/10.2337/diacare.27.11.2741.
- D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman and C.A. Mabuni, Crit. Rev. Environ. Sci. Technol., 29, 1 (1999); https://doi.org/10.1080/10643389991259164.
- V.K. Gupta, M. Gupta and S. Sharma, Water Res., 35, 1125 (2001); https://doi.org/10.1016/S0043-1354(00)00389-4.
- S. Rengaraj, K.H. Yeon and S.H. Moon, J. Hazard. Mater., 87, 273 (2001); https://doi.org/10.1016/S0304-3894(01)00291-6.
- N. Aristidis, G.A. Anthemidis, J.S. Zachariadis and J.A. Kougoulis, Talanta, 57, 15 (2002); https://doi.org/10.1016/S0039-9140(01)00676-2.
- A.J. Bednar, R.A. Kirgan and W.T. Jones, Anal. Chim. Acta, 632, 27 (2009); https://doi.org/10.1016/j.aca.2008.10.050.
- J. Lintschinger, K. Kalcher, W. Gossler, G. Kolbl and M. Novic, Fresenius J. Anal. Chem., 351, 604 (1995); https://doi.org/10.1007/BF00323333.
- P.R. Aranda, S. Moyano, L.D. Martinez and I.E. De Vito, Anal. Bioanal. Chem., 398, 1043 (2010); https://doi.org/10.1007/s00216-010-3950-y.
- I.W.F. Davidson and W.L. Secrest, Anal. Chem., 44, 1808 (1972); https://doi.org/10.1021/ac60319a021.
- T.-H. Ding, H.-H. Lin and C.-W. Whang, J. Chromatogr. A, 1062, 49 (2005); https://doi.org/10.1016/j.chroma.2004.11.034.
- C.N. Reilley, R.W. Schmid and F.S. Sadek, J. Chem. Educ., 36, 555 (1959); https://doi.org/10.1021/ed036p555.
- A. Hamza, A.S. Bashammakh, A.A. Al-Sibaai, H.M. Al-Saidi and M.S. El-Shahawi, J. Hazard. Mater., 178, 287 (2010); https://doi.org/10.1016/j.jhazmat.2010.01.075.
- S.A. Inamuddin, S. Khan, W. Siddiqui and A. Khan, Talanta, 71, 841 (2007); https://doi.org/10.1016/j.talanta.2006.05.042.
- C.N.R. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, New York, p. 353 (1963).
- F. Parvizian, S.M. Hosseini, A.R. Hamidi, S.S. Madaeni and A.R. Moghadassi, J. Taiwan Inst. Chem. Eng., 45, 2878 (2014); https://doi.org/10.1016/j.jtice.2014.08.017.
- C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, (1963).
- K. Moosavi, S. Setayeshi, M.G. Maragheh, S. Javadahmad, M.R. Kardan and S. Nosrati, J. Appl. Sci. (Faisalabad), 9, 2180 (2009); https://doi.org/10.3923/jas.2009.2180.2184.
- M.M.A. Khan and Rafiuddin, Desalination, 272, 306 (2011); https://doi.org/10.1016/j.desal.2011.01.041.
- R.P. Buck and E. Lindner, Pure Appl. Chem., 66, 2527 (1994); https://doi.org/10.1351/pac199466122527.
- M.R. Ganjali, M. Rezapour and S. Haghgoo, Sens. Actuator B Chem., 89, 21 (2003); https://doi.org/10.1016/S0925-4005(02)00422-7.
- Y. Umezawa, K. Umezawa and H. Sato, Pure Appl. Chem., 67, 507 (1995); https://doi.org/10.1351/pac199567030507.
- Lutfullah, M. Rashid, F. Khan and R. Wahab, Ind. Eng. Chem. Res., 53, 14897 (2014); https://doi.org/10.1021/ie501788a.
- P. Kumar and H.K. Sharma, Electrochim. Acta, 87, 925 (2013); https://doi.org/10.1016/j.electacta.2012.09.027.
- T.A. Ali, A.L. Saber, G.G. Mohamed and T.M. Bawazeer, Int. J. Electrochem. Sci., 9, 4932 (2014).
- M.B. Gholivand and F. Sharifpour, Talanta, 60, 707 (2003); https://doi.org/10.1016/S0039-9140(03)00130-9.
- A.K. Singh, A. Panwar, S. Kumar and S. Baniwal, Analyst, 124, 521 (1999); https://doi.org/10.1039/a901162e.
- A.K. Singh, V.K. Gupta and B. Gupta, Anal. Chim. Acta, 585, 171 (2007); https://doi.org/10.1016/j.aca.2006.11.074.
- R.K. Sharma and A. Goel, Anal. Chim. Acta, 534, 137 (2005); https://doi.org/10.1016/j.aca.2004.11.026.
References
R.A. Anderson, N. Cheng, N.A. Bryden, M.M. Polansky, N. Cheng, J. Chi and J. Feng, Diabetes, 46, 1786 (1997); https://doi.org/10.2337/diab.46.11.1786.
J.L. Wang and D. Lai, J. Affect. Disord., 110, 191 (2008); https://doi.org/10.1016/j.jad.2008.01.005.
W.T. Cefalu and F.B. Hu, Diabetes Care, 27, 2741 (2004); https://doi.org/10.2337/diacare.27.11.2741.
D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman and C.A. Mabuni, Crit. Rev. Environ. Sci. Technol., 29, 1 (1999); https://doi.org/10.1080/10643389991259164.
V.K. Gupta, M. Gupta and S. Sharma, Water Res., 35, 1125 (2001); https://doi.org/10.1016/S0043-1354(00)00389-4.
S. Rengaraj, K.H. Yeon and S.H. Moon, J. Hazard. Mater., 87, 273 (2001); https://doi.org/10.1016/S0304-3894(01)00291-6.
N. Aristidis, G.A. Anthemidis, J.S. Zachariadis and J.A. Kougoulis, Talanta, 57, 15 (2002); https://doi.org/10.1016/S0039-9140(01)00676-2.
A.J. Bednar, R.A. Kirgan and W.T. Jones, Anal. Chim. Acta, 632, 27 (2009); https://doi.org/10.1016/j.aca.2008.10.050.
J. Lintschinger, K. Kalcher, W. Gossler, G. Kolbl and M. Novic, Fresenius J. Anal. Chem., 351, 604 (1995); https://doi.org/10.1007/BF00323333.
P.R. Aranda, S. Moyano, L.D. Martinez and I.E. De Vito, Anal. Bioanal. Chem., 398, 1043 (2010); https://doi.org/10.1007/s00216-010-3950-y.
I.W.F. Davidson and W.L. Secrest, Anal. Chem., 44, 1808 (1972); https://doi.org/10.1021/ac60319a021.
T.-H. Ding, H.-H. Lin and C.-W. Whang, J. Chromatogr. A, 1062, 49 (2005); https://doi.org/10.1016/j.chroma.2004.11.034.
C.N. Reilley, R.W. Schmid and F.S. Sadek, J. Chem. Educ., 36, 555 (1959); https://doi.org/10.1021/ed036p555.
A. Hamza, A.S. Bashammakh, A.A. Al-Sibaai, H.M. Al-Saidi and M.S. El-Shahawi, J. Hazard. Mater., 178, 287 (2010); https://doi.org/10.1016/j.jhazmat.2010.01.075.
S.A. Inamuddin, S. Khan, W. Siddiqui and A. Khan, Talanta, 71, 841 (2007); https://doi.org/10.1016/j.talanta.2006.05.042.
C.N.R. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, New York, p. 353 (1963).
F. Parvizian, S.M. Hosseini, A.R. Hamidi, S.S. Madaeni and A.R. Moghadassi, J. Taiwan Inst. Chem. Eng., 45, 2878 (2014); https://doi.org/10.1016/j.jtice.2014.08.017.
C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, (1963).
K. Moosavi, S. Setayeshi, M.G. Maragheh, S. Javadahmad, M.R. Kardan and S. Nosrati, J. Appl. Sci. (Faisalabad), 9, 2180 (2009); https://doi.org/10.3923/jas.2009.2180.2184.
M.M.A. Khan and Rafiuddin, Desalination, 272, 306 (2011); https://doi.org/10.1016/j.desal.2011.01.041.
R.P. Buck and E. Lindner, Pure Appl. Chem., 66, 2527 (1994); https://doi.org/10.1351/pac199466122527.
M.R. Ganjali, M. Rezapour and S. Haghgoo, Sens. Actuator B Chem., 89, 21 (2003); https://doi.org/10.1016/S0925-4005(02)00422-7.
Y. Umezawa, K. Umezawa and H. Sato, Pure Appl. Chem., 67, 507 (1995); https://doi.org/10.1351/pac199567030507.
Lutfullah, M. Rashid, F. Khan and R. Wahab, Ind. Eng. Chem. Res., 53, 14897 (2014); https://doi.org/10.1021/ie501788a.
P. Kumar and H.K. Sharma, Electrochim. Acta, 87, 925 (2013); https://doi.org/10.1016/j.electacta.2012.09.027.
T.A. Ali, A.L. Saber, G.G. Mohamed and T.M. Bawazeer, Int. J. Electrochem. Sci., 9, 4932 (2014).
M.B. Gholivand and F. Sharifpour, Talanta, 60, 707 (2003); https://doi.org/10.1016/S0039-9140(03)00130-9.
A.K. Singh, A. Panwar, S. Kumar and S. Baniwal, Analyst, 124, 521 (1999); https://doi.org/10.1039/a901162e.
A.K. Singh, V.K. Gupta and B. Gupta, Anal. Chim. Acta, 585, 171 (2007); https://doi.org/10.1016/j.aca.2006.11.074.
R.K. Sharma and A. Goel, Anal. Chim. Acta, 534, 137 (2005); https://doi.org/10.1016/j.aca.2004.11.026.