Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication and Characterization of Biodegradable Poly(vinyl alcohol)/Chitosan Blends
Corresponding Author(s) : P.N. Yadav
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Poly(vinyl alcohol)/chitosan (PVA/CS) blends were prepared by solution casting method using glutaraldehyde as a cross linking agent. Fourier transform infrared spectroscopy (FTIR) and microhardness technique were employed to study the intermolecular interactions between constituents of polymer blends and mechanical properties respectively. The degradation properties of PVA/CS films were studied by composting method. FTIR spectra of poly(vinyl alcohol) and PVA/CS blends showed some variations in the absorption bands which reflected interactions between the components of blends. The mechanical stiffness of PVA/CS blends was enhanced by chitosan upto 40 % loading and it was found optimum composition for the maximum enhancement of mechanical properties of the blend. The degradation rate of blends was found increased with the increase in chitosan content.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, I. Burgar, E. Lourbakos and H. Beh, Polymer, 45, 3305 (2004); https://doi.org/10.1016/j.polymer.2004.02.044.
- G. Scott, Degradable Polymers: Principles and Applications, Dordrecht: Kluwer Academic Publishers, Netherlands, edn 2 (2002).
- C. Bastioli, Starch, 53, 351 (2001); https://doi.org/10.1002/1521-379X(200108)53:8<351::AIDSTAR351>3.0.CO;2-R.
- M.J. Diamond, B. Freedman and J.A. Garibaldi, Int. Biodeter. Biodegrad., 48, 219 (2001); https://doi.org/10.1016/S0964-8305(01)00085-3.
- K. Murakami, H. Aoki, S. Nakamura, S.-I. Nakamura, M. Takikawa, M. Hanzawa, S. Kishimoto, H. Hattori, Y. Tanaka, T. Kiyosawa, Y. Sato and M. Ishihara, Biomaterials, 31, 83 (2010); https://doi.org/10.1016/j.biomaterials.2009.09.031.
- K. Lewandowska, Thermochim. Acta, 493, 42 (2009); https://doi.org/10.1016/j.tca.2009.04.003.
- K. Kurita, Mar. Biotechnol., 8, 203 (2006); https://doi.org/10.1007/s10126-005-0097-5.
- C.-H. Chen, F.-Y. Wang, C.-F. Mao and C.-H. Yang, J. Appl. Polym. Sci., 105, 1086 (2007); https://doi.org/10.1002/app.26257.
- Z. Guohua, L. Ya, F. Cuilan, Z. Min, Z. Caiqiong and C. Zongdao, Polym. Degrad. Stab., 91, 703 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.06.008.
- E. Campos, P. Coimbra and M.H. Gil, Polym. Bull., 70, 549 (2013); https://doi.org/10.1007/s00289-012-0853-4.
- Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong and X.Y. Shen, Carbohydr. Polym., 67, 403 (2007); https://doi.org/10.1016/j.carbpol.2006.06.010.
- H. Zheng, Y.M. Du, J.H. Yu, R.H. Huang and L.N. Zhang, J. Appl. Polym. Sci., 80, 2558 (2001); https://doi.org/10.1002/app.1365.
- Y. Zheng, Y. Wang, X. Chen, L. Qing and H. Yang, J. Compos. Mater., 41, 2071 (2007); https://doi.org/10.1177/0021998307074126.
- S. Liu, J. He, J. Xue and W. Ding, J. Nanopart. Res., 11, 553 (2009); https://doi.org/10.1007/s11051-007-9321-8.
- U.K. Parida, A.K. Nayak, B.K. Binhani and P.L. Nayak, J. Biomater. Nanobiotechnol., 2, 414 (2011); https://doi.org/10.4236/jbnb.2011.24051.
- M. Miya, R. Iwamoto and S. Mima, J. Polym. Sci., Polym. Phys. Ed., 22, 1149 (1984); https://doi.org/10.1002/pol.1984.180220615.
- W.-Y. Chuang, T.-H. Young, C.-H. Yao and W.-Y. Chiu, Biomaterials, 20, 1479 (1999); https://doi.org/10.1016/S0142-9612(99)00054-X.
- A. Pawlak and M. Mucha, Thermochim. Acta, 396, 153 (2003); https://doi.org/10.1016/S0040-6031(02)00523-3.
- M. Mucha and A. Pawlak, Thermochim. Acta, 427, 69 (2005); https://doi.org/10.1016/j.tca.2004.08.014.
- S.-G. Cao, Z.-F. Liu, B.-H. Hu and H.-Q. Liu, Chin. J. Polym. Sci., 28, 781 (2010); https://doi.org/10.1007/s10118-010-9140-8.
- J.M. Yang, W.Y. Su, T.L. Leu and M.C. Yang, J. Membr. Sci., 236, 39 (2004); https://doi.org/10.1016/j.memsci.2004.02.005.
- A. Abraham, P.A. Soloman and V.O. Rejini, Proceed. Technol., 24, 741 (2016); https://doi.org/10.1016/j.protcy.2016.05.206.
- E. Budianto, S.P. Muthoharoh and N.M. Nizardo, Asian J. Appl. Sci. (Faisalabad), 03, 581 (2015).
- K.C.S. Figueiredo, T.L.M. Alves and C.P. Borges, J. Appl. Polym. Sci., 111, 3074 (2009); https://doi.org/10.1002/app.29263.
- W.S. Wan Ngah, C.S. Endud and R. Mayanar, React. Funct. Polym., 50, 181 (2002); https://doi.org/10.1016/S1381-5148(01)00113-4.
- V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); https://doi.org/10.1016/j.ijpharm.2003.12.026.
- Q. Yang, F. Dou, B. Liang and Q. Shen, Carbohydr. Polym., 59, 205 (2005); https://doi.org/10.1016/j.carbpol.2004.09.013.
- J. Varshosaz, H. Sadrai and R. Alinagari, J. Microencapsul., 21, 761 (2004); https://doi.org/10.1080/02652040400015403.
- X. Yang, Q. Liu, X. Chen, F. Yu and Z. Zhu, Carbohydr. Polym., 73, 401 (2008); https://doi.org/10.1016/j.carbpol.2007.12.008.
- X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma and Z. Zhu, Radiat. Phys. Chem., 79, 606 (2010); https://doi.org/10.1016/j.radphyschem.2009.12.017.
- A. Jayakrishnan and S.R. Jameela, Biomaterials, 17, 471 (1996); https://doi.org/10.1016/0142-9612(96)82721-9.
- T. Wang, M. Turhan and S. Gunasekaran, Polym. Int., 53, 911 (2004); https://doi.org/10.1002/pi.1461.
- S.B. Bahrami, S.S. Kordestani, H. Mirzadeh and P. Mansoori, Iran. Polym. J., 12, 139 (2003).
- N.A. Azahari, N. Ohtman and H. Ismail, J. Physiol. Sci., 22, 15 (2011).
- E. Parparita, C.N. Cheaburu and C. Vasile, Cellul. Chem. Technol., 46, 571 (2012).
- S.G. Anicuta, L. Dobre, M. Stroescu and I. Jipa, Analele Universitatii din Oradea Facsicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara, 1234 (2010).
- S. Pokhrel, R. Lach, H.H. Le, A. Wutzler, W. Grellmann, H.-J. Radusch, R.P. Dhakal, A. Esposito, S. Henning, P.N. Yadav, J.M. Saiter, G. Heinrich and R. Adhikari, Macromol. Symp., 366, 23 (2016); https://doi.org/10.1002/masy.201650043.
- S. Arora, S. Lal, S. Kumar, M. Kumar and M. Kumar, Arch. Appl. Sci. Res., 3, 188 (2011).
- N.A. Ali, E.A. Al-Ajaj and F.T.M. Noori, J. Adv. Res., 2, 36 (2013).
- F.J.B. Calleja and S. Fakirov, Microhardness of Polymers, Cambridge University Press (1999).
- R. Lach, G.H. Michler and W. Grellmann, Macromol. Mater. Eng.,295, 484 (2010); https://doi.org/10.1002/mame.200900393.
- I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal and Z. Demir, J. Mech. Eng., 61, 601 (2015); https://doi.org/10.5545/sv-jme.2015.2632.
- D.M. Panaitescu, A.N. Frone, M. Ghiurea, C.I. Spataru, C. Radovici and M.D. Iorga, in ed.: B. Attaf, Advances in Composites Materials-Ecodesign and Analysis, InTech. Chap. 5, p. 103 (2011). www.intehopen.com.
- C.K. Lam, H.Y. Cheung, K.T. Lau, L.M. Zhou, M.W. Ho and D. Hui, Compos., Part B Eng., 36, 263 (2005); https://doi.org/10.1016/j.compositesb.2004.09.006.
- N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre and J.-E. Nava-Saucedo, Chemosphere, 73, 429 (2008); https://doi.org/10.1016/j.chemosphere.2008.06.064.
- S. Bonhomme, A. Cuer, A.M. Delort, J. Lemaire, M. Sancelme and G. Scott, Polym. Degrad. Stab., 81, 441 (2003); https://doi.org/10.1016/S0141-3910(03)00129-0.
- K. Leja and G. Lewandowicz, Pol. J. Environ. Stud., 19, 255 (2010).
- G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S.E. Selke and S.P. Singh, Macromol. Biosci., 7, 255 (2007); https://doi.org/10.1002/mabi.200600168.
References
X. Zhang, I. Burgar, E. Lourbakos and H. Beh, Polymer, 45, 3305 (2004); https://doi.org/10.1016/j.polymer.2004.02.044.
G. Scott, Degradable Polymers: Principles and Applications, Dordrecht: Kluwer Academic Publishers, Netherlands, edn 2 (2002).
C. Bastioli, Starch, 53, 351 (2001); https://doi.org/10.1002/1521-379X(200108)53:8<351::AIDSTAR351>3.0.CO;2-R.
M.J. Diamond, B. Freedman and J.A. Garibaldi, Int. Biodeter. Biodegrad., 48, 219 (2001); https://doi.org/10.1016/S0964-8305(01)00085-3.
K. Murakami, H. Aoki, S. Nakamura, S.-I. Nakamura, M. Takikawa, M. Hanzawa, S. Kishimoto, H. Hattori, Y. Tanaka, T. Kiyosawa, Y. Sato and M. Ishihara, Biomaterials, 31, 83 (2010); https://doi.org/10.1016/j.biomaterials.2009.09.031.
K. Lewandowska, Thermochim. Acta, 493, 42 (2009); https://doi.org/10.1016/j.tca.2009.04.003.
K. Kurita, Mar. Biotechnol., 8, 203 (2006); https://doi.org/10.1007/s10126-005-0097-5.
C.-H. Chen, F.-Y. Wang, C.-F. Mao and C.-H. Yang, J. Appl. Polym. Sci., 105, 1086 (2007); https://doi.org/10.1002/app.26257.
Z. Guohua, L. Ya, F. Cuilan, Z. Min, Z. Caiqiong and C. Zongdao, Polym. Degrad. Stab., 91, 703 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.06.008.
E. Campos, P. Coimbra and M.H. Gil, Polym. Bull., 70, 549 (2013); https://doi.org/10.1007/s00289-012-0853-4.
Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong and X.Y. Shen, Carbohydr. Polym., 67, 403 (2007); https://doi.org/10.1016/j.carbpol.2006.06.010.
H. Zheng, Y.M. Du, J.H. Yu, R.H. Huang and L.N. Zhang, J. Appl. Polym. Sci., 80, 2558 (2001); https://doi.org/10.1002/app.1365.
Y. Zheng, Y. Wang, X. Chen, L. Qing and H. Yang, J. Compos. Mater., 41, 2071 (2007); https://doi.org/10.1177/0021998307074126.
S. Liu, J. He, J. Xue and W. Ding, J. Nanopart. Res., 11, 553 (2009); https://doi.org/10.1007/s11051-007-9321-8.
U.K. Parida, A.K. Nayak, B.K. Binhani and P.L. Nayak, J. Biomater. Nanobiotechnol., 2, 414 (2011); https://doi.org/10.4236/jbnb.2011.24051.
M. Miya, R. Iwamoto and S. Mima, J. Polym. Sci., Polym. Phys. Ed., 22, 1149 (1984); https://doi.org/10.1002/pol.1984.180220615.
W.-Y. Chuang, T.-H. Young, C.-H. Yao and W.-Y. Chiu, Biomaterials, 20, 1479 (1999); https://doi.org/10.1016/S0142-9612(99)00054-X.
A. Pawlak and M. Mucha, Thermochim. Acta, 396, 153 (2003); https://doi.org/10.1016/S0040-6031(02)00523-3.
M. Mucha and A. Pawlak, Thermochim. Acta, 427, 69 (2005); https://doi.org/10.1016/j.tca.2004.08.014.
S.-G. Cao, Z.-F. Liu, B.-H. Hu and H.-Q. Liu, Chin. J. Polym. Sci., 28, 781 (2010); https://doi.org/10.1007/s10118-010-9140-8.
J.M. Yang, W.Y. Su, T.L. Leu and M.C. Yang, J. Membr. Sci., 236, 39 (2004); https://doi.org/10.1016/j.memsci.2004.02.005.
A. Abraham, P.A. Soloman and V.O. Rejini, Proceed. Technol., 24, 741 (2016); https://doi.org/10.1016/j.protcy.2016.05.206.
E. Budianto, S.P. Muthoharoh and N.M. Nizardo, Asian J. Appl. Sci. (Faisalabad), 03, 581 (2015).
K.C.S. Figueiredo, T.L.M. Alves and C.P. Borges, J. Appl. Polym. Sci., 111, 3074 (2009); https://doi.org/10.1002/app.29263.
W.S. Wan Ngah, C.S. Endud and R. Mayanar, React. Funct. Polym., 50, 181 (2002); https://doi.org/10.1016/S1381-5148(01)00113-4.
V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); https://doi.org/10.1016/j.ijpharm.2003.12.026.
Q. Yang, F. Dou, B. Liang and Q. Shen, Carbohydr. Polym., 59, 205 (2005); https://doi.org/10.1016/j.carbpol.2004.09.013.
J. Varshosaz, H. Sadrai and R. Alinagari, J. Microencapsul., 21, 761 (2004); https://doi.org/10.1080/02652040400015403.
X. Yang, Q. Liu, X. Chen, F. Yu and Z. Zhu, Carbohydr. Polym., 73, 401 (2008); https://doi.org/10.1016/j.carbpol.2007.12.008.
X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma and Z. Zhu, Radiat. Phys. Chem., 79, 606 (2010); https://doi.org/10.1016/j.radphyschem.2009.12.017.
A. Jayakrishnan and S.R. Jameela, Biomaterials, 17, 471 (1996); https://doi.org/10.1016/0142-9612(96)82721-9.
T. Wang, M. Turhan and S. Gunasekaran, Polym. Int., 53, 911 (2004); https://doi.org/10.1002/pi.1461.
S.B. Bahrami, S.S. Kordestani, H. Mirzadeh and P. Mansoori, Iran. Polym. J., 12, 139 (2003).
N.A. Azahari, N. Ohtman and H. Ismail, J. Physiol. Sci., 22, 15 (2011).
E. Parparita, C.N. Cheaburu and C. Vasile, Cellul. Chem. Technol., 46, 571 (2012).
S.G. Anicuta, L. Dobre, M. Stroescu and I. Jipa, Analele Universitatii din Oradea Facsicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara, 1234 (2010).
S. Pokhrel, R. Lach, H.H. Le, A. Wutzler, W. Grellmann, H.-J. Radusch, R.P. Dhakal, A. Esposito, S. Henning, P.N. Yadav, J.M. Saiter, G. Heinrich and R. Adhikari, Macromol. Symp., 366, 23 (2016); https://doi.org/10.1002/masy.201650043.
S. Arora, S. Lal, S. Kumar, M. Kumar and M. Kumar, Arch. Appl. Sci. Res., 3, 188 (2011).
N.A. Ali, E.A. Al-Ajaj and F.T.M. Noori, J. Adv. Res., 2, 36 (2013).
F.J.B. Calleja and S. Fakirov, Microhardness of Polymers, Cambridge University Press (1999).
R. Lach, G.H. Michler and W. Grellmann, Macromol. Mater. Eng.,295, 484 (2010); https://doi.org/10.1002/mame.200900393.
I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal and Z. Demir, J. Mech. Eng., 61, 601 (2015); https://doi.org/10.5545/sv-jme.2015.2632.
D.M. Panaitescu, A.N. Frone, M. Ghiurea, C.I. Spataru, C. Radovici and M.D. Iorga, in ed.: B. Attaf, Advances in Composites Materials-Ecodesign and Analysis, InTech. Chap. 5, p. 103 (2011). www.intehopen.com.
C.K. Lam, H.Y. Cheung, K.T. Lau, L.M. Zhou, M.W. Ho and D. Hui, Compos., Part B Eng., 36, 263 (2005); https://doi.org/10.1016/j.compositesb.2004.09.006.
N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre and J.-E. Nava-Saucedo, Chemosphere, 73, 429 (2008); https://doi.org/10.1016/j.chemosphere.2008.06.064.
S. Bonhomme, A. Cuer, A.M. Delort, J. Lemaire, M. Sancelme and G. Scott, Polym. Degrad. Stab., 81, 441 (2003); https://doi.org/10.1016/S0141-3910(03)00129-0.
K. Leja and G. Lewandowicz, Pol. J. Environ. Stud., 19, 255 (2010).
G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S.E. Selke and S.P. Singh, Macromol. Biosci., 7, 255 (2007); https://doi.org/10.1002/mabi.200600168.