Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Chemical Synthesis of Copper Nanoparticles − A Comparative Study with Chemical Reduction and Electrolytic Methods
Corresponding Author(s) : Jaya T. Varkey
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Copper nanoparticles perform a key role in catalysis, antimicrobial fields and electronics. Copper nanoparticles were synthesized by various methods and their efficiencies were compared. Green Chemical approach which used citrus lemon fruit extract both as the reduction and capping agent is found to be most efficient and economical method for the synthesis of copper nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.G. Lohmeijer and U.S. Schubert, Angew. Chem. Int. Ed., 41, 3825 (2002); https://doi.org/10.1002/1521-3773(20021018)41:20<3825::AIDANIE3825>3.0.CO;2-6.
- S. Thangagavel and R. Ramaraj, J. Phys. Chem. C, 112, 19825 (2008); https://doi.org/10.1021/jp804310u.
- D. Philip, Spectrochim. Acta A, 73, 374 (2009); https://doi.org/10.1016/j.saa.2009.02.037.
- C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Soc. Rev., 29, 27 (2000); https://doi.org/10.1039/a904518j.
- A. Moores and F. Goettmann, New J. Chem., 30, 1121 (2006); https://doi.org/10.1039/b604038c.
- J.D. Aiken III and R.G. Finke, J. Mol. Catal. Chem., 145, 1 (1999); https://doi.org/10.1016/S1381-1169(99)00098-9.
- K.K. Chatopadhyay and A.N. Banerjee, Introduction to Nanoscience and Nanotechnology. PHI Learning, New Delhi, pp. 1-5 (2009).
- D. Domínguez-Gutiérrez, M. Surtchev, E. Eiser and C.J. Elsevier, Nano Lett., 6, 145 (2006); https://doi.org/10.1021/nl051944v.
- M. Everts, V. Saini, J.L. Leddon, R.J. Kok, M. Stoff-Khalili, M.A. Preuss, C.L. Millican, G. Perkins, J.M. Brown, H. Bagaria, D.E. Nikles, D.T. Johnson, V.P. Zharov and D.T. Curiel, Nano Lett., 6, 587 (2006); https://doi.org/10.1021/nl0500555.
- C. Wu, B.P. Mosher and T. Zeng, J. Nanopart. Res., 8, 965 (2006); https://doi.org/10.1007/s11051-005-9065-2.
- H.X. Zhang, U. Siegert, R. Liu and W.B. Cai, Nanoscale Res. Lett., 4, 705 (2009); https://doi.org/10.1007/s11671-009-9301-2.
- X. Zhang, H. Yin, X. Cheng, H. Hu, Q. Yu and A. Wang, Mater. Res. Bull., 41, 2041 (2006); https://doi.org/10.1016/j.materresbull.2006.04.008.
- S.I. Smitha, D. Philip and K.G. Gopchandran, Spectrochim. Acta A, 74, 735 (2009); https://doi.org/10.1016/j.saa.2009.08.007.
- J.Y. Song, H.-K. Jang and B.S. Kim, Process Biochem., 44, 1133 (2009); https://doi.org/10.1016/j.procbio.2009.06.005.
- K.N. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002.
- J.K.V.M. Angrasan and R. Subbaiya, Int. J. Curr. Microbiol. Appl. Sci., 3, 768 (2014).
- A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8.
- L. Lisiecki, F. Billoudet and P. Pileni, J. Phys. Chem., 100, 4160 (1996); https://doi.org/10.1021/jp9523837.
- Y.H. Pai, Y.C. Chang and F.S. Shieu, A Novel Approach of Synthesizing Metal Nano+Particles, 207th ECS Meeting, Abstract No. 80 (2005).
- S. Shende, A.P. Ingle, A. Gade and M. Rai, World J. Microbiol. Biotechnol., 31, 865 (2015); https://doi.org/10.1007/s11274-015-1840-3.
References
B.G. Lohmeijer and U.S. Schubert, Angew. Chem. Int. Ed., 41, 3825 (2002); https://doi.org/10.1002/1521-3773(20021018)41:20<3825::AIDANIE3825>3.0.CO;2-6.
S. Thangagavel and R. Ramaraj, J. Phys. Chem. C, 112, 19825 (2008); https://doi.org/10.1021/jp804310u.
D. Philip, Spectrochim. Acta A, 73, 374 (2009); https://doi.org/10.1016/j.saa.2009.02.037.
C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Soc. Rev., 29, 27 (2000); https://doi.org/10.1039/a904518j.
A. Moores and F. Goettmann, New J. Chem., 30, 1121 (2006); https://doi.org/10.1039/b604038c.
J.D. Aiken III and R.G. Finke, J. Mol. Catal. Chem., 145, 1 (1999); https://doi.org/10.1016/S1381-1169(99)00098-9.
K.K. Chatopadhyay and A.N. Banerjee, Introduction to Nanoscience and Nanotechnology. PHI Learning, New Delhi, pp. 1-5 (2009).
D. Domínguez-Gutiérrez, M. Surtchev, E. Eiser and C.J. Elsevier, Nano Lett., 6, 145 (2006); https://doi.org/10.1021/nl051944v.
M. Everts, V. Saini, J.L. Leddon, R.J. Kok, M. Stoff-Khalili, M.A. Preuss, C.L. Millican, G. Perkins, J.M. Brown, H. Bagaria, D.E. Nikles, D.T. Johnson, V.P. Zharov and D.T. Curiel, Nano Lett., 6, 587 (2006); https://doi.org/10.1021/nl0500555.
C. Wu, B.P. Mosher and T. Zeng, J. Nanopart. Res., 8, 965 (2006); https://doi.org/10.1007/s11051-005-9065-2.
H.X. Zhang, U. Siegert, R. Liu and W.B. Cai, Nanoscale Res. Lett., 4, 705 (2009); https://doi.org/10.1007/s11671-009-9301-2.
X. Zhang, H. Yin, X. Cheng, H. Hu, Q. Yu and A. Wang, Mater. Res. Bull., 41, 2041 (2006); https://doi.org/10.1016/j.materresbull.2006.04.008.
S.I. Smitha, D. Philip and K.G. Gopchandran, Spectrochim. Acta A, 74, 735 (2009); https://doi.org/10.1016/j.saa.2009.08.007.
J.Y. Song, H.-K. Jang and B.S. Kim, Process Biochem., 44, 1133 (2009); https://doi.org/10.1016/j.procbio.2009.06.005.
K.N. Thakkar, S.S. Mhatre and R.Y. Parikh, Nanomedicine, 6, 257 (2010); https://doi.org/10.1016/j.nano.2009.07.002.
J.K.V.M. Angrasan and R. Subbaiya, Int. J. Curr. Microbiol. Appl. Sci., 3, 768 (2014).
A.P. Ingle, N. Duran and M. Rai, Appl. Microbiol. Biotechnol., 98, 1001 (2014); https://doi.org/10.1007/s00253-013-5422-8.
L. Lisiecki, F. Billoudet and P. Pileni, J. Phys. Chem., 100, 4160 (1996); https://doi.org/10.1021/jp9523837.
Y.H. Pai, Y.C. Chang and F.S. Shieu, A Novel Approach of Synthesizing Metal Nano+Particles, 207th ECS Meeting, Abstract No. 80 (2005).
S. Shende, A.P. Ingle, A. Gade and M. Rai, World J. Microbiol. Biotechnol., 31, 865 (2015); https://doi.org/10.1007/s11274-015-1840-3.