Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel Synthesis, Characterization and Biological Studies of Ferrocenyl Substituted Pyrazoles
Corresponding Author(s) : Manoj Kumar
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
It has been discovered that ferrocenyl substituted heterocyclic compounds have wide scope of restorative methodology. The combination of ferrocenyl substituted pyrazole is the new class in these compounds with upgraded natural activity. This work center around blend of ferrocenyl substituted pyrazoles through novel course. The combination of 1-phenyl-3-ferrocenyl-pyrazole was examined including addition-cyclocondensation like response conditions. The response continued through three phases using of expansion cyclo-buildup of acetyl ferrocene with phenyl hydrazine pursued by cyclizing reagent iodine with NaHCO3. In both syntheses, each time single product isolated having good yields (87 and 79 %). Ferrocenyl substituted pyrazoles were examined by spectroscopic techniques (1H NMR, IR, MS) and their biological properties have been screened.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.C. Behr, R. Fusco and C.H. Jarboe, ed.: R.H. Wiley, The Chemistry of Heterocyclic Compounds: Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings, Interscience Publishers: New York, vol. 3 (1967).
- G.M. Badger, The Chemistry of Heterocyclic Compounds, Academic Press: New York, vol. 5 (1961).
- R. Mukherjee, Coord. Chem. Rev., 203, 151 (2000); https://doi.org/10.1016/S0010-8545(99)00144-7.
- P. Braunstein and F. Naud, Angew. Chem. Int. Ed., 40, 680 (2001); https://doi.org/10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0.
- S. Trofimenko, J. Am. Chem. Soc., 88, 1842 (1966); https://doi.org/10.1021/ja00960a065.
- S. Trofimenko, J. Am. Chem. Soc., 89, 3170 (1967); https://doi.org/10.1021/ja00989a017.
- S. Trofimenko, J. Am. Chem. Soc., 89, 6288 (1967); https://doi.org/10.1021/ja01000a053.
- S. Trofimenko, Chem. Rev., 72, 497 (1972); https://doi.org/10.1021/cr60279a003.
- K. Karrouchi, S. Radi,Y. Ramli, J. Taoufik,Y.N. Mabkhot, F.A. Al-Aizari and M. Ansar, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134.
- S.S. Braga and A.M.S. Silva, Organometallics, 32, 5626 (2013); https://doi.org/10.1021/om400446y.
- K.J. Nikula, J.D. Sun, E.B. Barr, W.E. Bechtold, P.J. Haley, J.M. Benson, A.F. Eidson, D.G. Burt, A.R. Dahl, R.F. Henderson, I.Y. Chang, J.L. Mauderly, M.P. Dieter and C.H. Hobbs, Official J. Soc. Toxicol., 21, 127 (1993); https://doi.org/10.1093/toxsci/21.2.127.
- L.A. Summers, Adv. Heterocycl. Chem., 35, 281 (1984); https://doi.org/10.1016/S0065-2725(08)60151-8.
- M. Bioani and M. Gonzalez, Mini Rev. Med. Chem., 5, 409 (2005); https://doi.org/10.2174/1389557053544047.
- K.Y. Lee, J.M. Kim and J.N. Kim, Tetrahedron Lett., 44, 6737 (2003); https://doi.org/10.1016/S0040-4039(03)01648-4.
- K.S. Jain, T.S. Schitre, P.B. Miniyar, M.K. Kathiravan, V.S. Bendre, V.S. Veer, S.R. Shahane and C.J. Shishoo, Curr. Sci. (India), 90, 793 (2006).
- Z. Jin, Nat. Prod. Rep., 23, 464 (2006); https://doi.org/10.1039/b502166a.
- T. Pinho e Melo, Curr. Org. Chem., 9, 925 (2005); https://doi.org/10.2174/1385272054368420.
- B.E. Maryanoff, S.L. Keeley and F.J. Persico, J. Med. Chem., 26, 226 (1983); https://doi.org/10.1021/jm00356a020.
- D. Scutaru, L. Tataru, I. Mazilu, E. Diaconu, T. Lixandru and C. Simionescu, J. Organomet. Chem., 401, 81 (1991); https://doi.org/10.1016/0022-328X(91)86197-X.
- D. Scutaru, I. Mazilu, L. Tataru, M. Vata and T. Lixandru, J. Organomet. Chem., 406, 183 (1991); https://doi.org/10.1016/0022-328X(91)83185-7.
- Y. Xia, Z.W. Dong, B.X. Zhao, X. Ge, N. Meng, D.S. Shin and J.-Y. Miao, Bioorg. Med. Chem., 15, 6893 (2007); https://doi.org/10.1016/j.bmc.2007.08.021.
- S. Kumar, J. Biosci., 2, 60 (2014).
- U. Burkhardt, D. Drommi and A. Togni, Inorg. Chim. Acta, 296, 183 (1999); https://doi.org/10.1016/S0020-1693(99)00391-6.
- B.B. Hasinoff, H. Liang, X. Wu, L.J. Guziec, F.S. Guziec Jr., K. Marshall and J.C. Yalowich, Bioorg. Med. Chem., 16, 3959 (2008); https://doi.org/10.1016/j.bmc.2008.01.033.
- J.H. Tan, Q.X. Zhang, Z.S. Huang, Y. Chen, X.D. Wang, L.Q. Gu and J.Y. Wu, Eur. J. Med. Chem., 41, 1041 (2006); https://doi.org/10.1016/j.ejmech.2006.04.006.
- A.A. Bekhit and T. Abdel-Aziem, Bioorg. Med. Chem., 12, 1935 (2004); https://doi.org/10.1016/j.bmc.2004.01.037.
- S. Mandal, M. Mondal, J.K. Biswas, D.B. Cordes, A.M.Z. Slawin, R.J. Butcher, M. Saha and N. Chandra Saha, J. Mol. Struct., 1152, 189 (2018); https://doi.org/10.1016/j.molstruc.2017.09.015.
- A. Munyaneza, G. Kumar and I.C. Morobe, Synth. Catal., 3, 1 (2018); https://doi.org/10.4172/2574-0431.100020.
- Y.-J. Liu, H. Chao, L.-F. Tan, Y.-X. Yuan, W. Wei and L.-N. Ji, J. Inorg. Biochem., 99, 530 (2005); https://doi.org/10.1016/j.jinorgbio.2004.10.030.
- M. Kumar, H.S. Pallvi, H.S. Tuli and R. Khare, Asian J. Chem., 31, 799 (2019); https://doi.org/10.14233/ajchem.2019.21732.
- M. Patel, M. Chhasatia and B. Bhatt, Med. Chem. Res., 20, 220 (2011); https://doi.org/10.1007/s00044-010-9310-9.
- Q.L. Zhang, J.G. Liu, J.Z. Liu, H. Li, Y. Yang, H. Xu, H. Chao and L.N. Ji, Inorg. Chim. Acta, 339, 34 (2002); https://doi.org/10.1016/S0020-1693(02)00923-4.
- C. Han, Y.C. Guo, D.D. Wang, X.J. Dai, F.J. Wu, H.F. Liu, G.F. Dai and J.C. Tao, Chin. Chem. Lett., 26, 534 (2015); https://doi.org/10.1016/j.cclet.2015.01.006.
- J. Feng, H. Qi, X. Sun, S. Feng, Z. Liu, Y. Song and X. Qiao, Chem. Pharm. Bull. (Tokyo), 66, 1065 (2018); https://doi.org/10.1248/cpb.c18-00546.
References
L.C. Behr, R. Fusco and C.H. Jarboe, ed.: R.H. Wiley, The Chemistry of Heterocyclic Compounds: Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings, Interscience Publishers: New York, vol. 3 (1967).
G.M. Badger, The Chemistry of Heterocyclic Compounds, Academic Press: New York, vol. 5 (1961).
R. Mukherjee, Coord. Chem. Rev., 203, 151 (2000); https://doi.org/10.1016/S0010-8545(99)00144-7.
P. Braunstein and F. Naud, Angew. Chem. Int. Ed., 40, 680 (2001); https://doi.org/10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0.
S. Trofimenko, J. Am. Chem. Soc., 88, 1842 (1966); https://doi.org/10.1021/ja00960a065.
S. Trofimenko, J. Am. Chem. Soc., 89, 3170 (1967); https://doi.org/10.1021/ja00989a017.
S. Trofimenko, J. Am. Chem. Soc., 89, 6288 (1967); https://doi.org/10.1021/ja01000a053.
S. Trofimenko, Chem. Rev., 72, 497 (1972); https://doi.org/10.1021/cr60279a003.
K. Karrouchi, S. Radi,Y. Ramli, J. Taoufik,Y.N. Mabkhot, F.A. Al-Aizari and M. Ansar, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134.
S.S. Braga and A.M.S. Silva, Organometallics, 32, 5626 (2013); https://doi.org/10.1021/om400446y.
K.J. Nikula, J.D. Sun, E.B. Barr, W.E. Bechtold, P.J. Haley, J.M. Benson, A.F. Eidson, D.G. Burt, A.R. Dahl, R.F. Henderson, I.Y. Chang, J.L. Mauderly, M.P. Dieter and C.H. Hobbs, Official J. Soc. Toxicol., 21, 127 (1993); https://doi.org/10.1093/toxsci/21.2.127.
L.A. Summers, Adv. Heterocycl. Chem., 35, 281 (1984); https://doi.org/10.1016/S0065-2725(08)60151-8.
M. Bioani and M. Gonzalez, Mini Rev. Med. Chem., 5, 409 (2005); https://doi.org/10.2174/1389557053544047.
K.Y. Lee, J.M. Kim and J.N. Kim, Tetrahedron Lett., 44, 6737 (2003); https://doi.org/10.1016/S0040-4039(03)01648-4.
K.S. Jain, T.S. Schitre, P.B. Miniyar, M.K. Kathiravan, V.S. Bendre, V.S. Veer, S.R. Shahane and C.J. Shishoo, Curr. Sci. (India), 90, 793 (2006).
Z. Jin, Nat. Prod. Rep., 23, 464 (2006); https://doi.org/10.1039/b502166a.
T. Pinho e Melo, Curr. Org. Chem., 9, 925 (2005); https://doi.org/10.2174/1385272054368420.
B.E. Maryanoff, S.L. Keeley and F.J. Persico, J. Med. Chem., 26, 226 (1983); https://doi.org/10.1021/jm00356a020.
D. Scutaru, L. Tataru, I. Mazilu, E. Diaconu, T. Lixandru and C. Simionescu, J. Organomet. Chem., 401, 81 (1991); https://doi.org/10.1016/0022-328X(91)86197-X.
D. Scutaru, I. Mazilu, L. Tataru, M. Vata and T. Lixandru, J. Organomet. Chem., 406, 183 (1991); https://doi.org/10.1016/0022-328X(91)83185-7.
Y. Xia, Z.W. Dong, B.X. Zhao, X. Ge, N. Meng, D.S. Shin and J.-Y. Miao, Bioorg. Med. Chem., 15, 6893 (2007); https://doi.org/10.1016/j.bmc.2007.08.021.
S. Kumar, J. Biosci., 2, 60 (2014).
U. Burkhardt, D. Drommi and A. Togni, Inorg. Chim. Acta, 296, 183 (1999); https://doi.org/10.1016/S0020-1693(99)00391-6.
B.B. Hasinoff, H. Liang, X. Wu, L.J. Guziec, F.S. Guziec Jr., K. Marshall and J.C. Yalowich, Bioorg. Med. Chem., 16, 3959 (2008); https://doi.org/10.1016/j.bmc.2008.01.033.
J.H. Tan, Q.X. Zhang, Z.S. Huang, Y. Chen, X.D. Wang, L.Q. Gu and J.Y. Wu, Eur. J. Med. Chem., 41, 1041 (2006); https://doi.org/10.1016/j.ejmech.2006.04.006.
A.A. Bekhit and T. Abdel-Aziem, Bioorg. Med. Chem., 12, 1935 (2004); https://doi.org/10.1016/j.bmc.2004.01.037.
S. Mandal, M. Mondal, J.K. Biswas, D.B. Cordes, A.M.Z. Slawin, R.J. Butcher, M. Saha and N. Chandra Saha, J. Mol. Struct., 1152, 189 (2018); https://doi.org/10.1016/j.molstruc.2017.09.015.
A. Munyaneza, G. Kumar and I.C. Morobe, Synth. Catal., 3, 1 (2018); https://doi.org/10.4172/2574-0431.100020.
Y.-J. Liu, H. Chao, L.-F. Tan, Y.-X. Yuan, W. Wei and L.-N. Ji, J. Inorg. Biochem., 99, 530 (2005); https://doi.org/10.1016/j.jinorgbio.2004.10.030.
M. Kumar, H.S. Pallvi, H.S. Tuli and R. Khare, Asian J. Chem., 31, 799 (2019); https://doi.org/10.14233/ajchem.2019.21732.
M. Patel, M. Chhasatia and B. Bhatt, Med. Chem. Res., 20, 220 (2011); https://doi.org/10.1007/s00044-010-9310-9.
Q.L. Zhang, J.G. Liu, J.Z. Liu, H. Li, Y. Yang, H. Xu, H. Chao and L.N. Ji, Inorg. Chim. Acta, 339, 34 (2002); https://doi.org/10.1016/S0020-1693(02)00923-4.
C. Han, Y.C. Guo, D.D. Wang, X.J. Dai, F.J. Wu, H.F. Liu, G.F. Dai and J.C. Tao, Chin. Chem. Lett., 26, 534 (2015); https://doi.org/10.1016/j.cclet.2015.01.006.
J. Feng, H. Qi, X. Sun, S. Feng, Z. Liu, Y. Song and X. Qiao, Chem. Pharm. Bull. (Tokyo), 66, 1065 (2018); https://doi.org/10.1248/cpb.c18-00546.