Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
QSAR Analysis on Apigenin Derivative Compounds as Antioxidant Using Semiempirical Austin Model 1
Corresponding Author(s) : Esti Mumpuni
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Quantitative structure-activity relationship (QSAR) analysis has been done on derivative compounds of apigenin. Apigenin is one of flavonoid group compound that potential as antioxidant. QSAR analysis was initiated by modelling the structures of compounds and calculating the descriptors of QSAR using Hyperchem software with semiempirical Austin Model 1 (AM 1) method. Determination of QSAR equation has been done using multilinear regression analysis method on one of the statistical data processing software. Of the 18 QSAR equation models, based on the value of R, R2, SE and F obtained 4 QSAR equation models that qualified. The best QSAR equation model determined through the process of validation of the test set compounds. The validation result showed that the best QSAR equation model of the following equation:
–log IC50 = 10.035 + (0.997 HOMO energy) + (2.134 LUMO energy) + (-0.045 hydration energy) + (-0.056 log P) + (-0.341 Dipole) + (-3.552 atomic charge of C5) + (4.138 atomic charge of C5’)
The results of predicted IC50 on 91 apigenin derivative suggest that the hydration 50 compounds have better biological activity as antioxidant than apigenin and the compound 3,3',6-triamine apigenin is a compound with the smallest predicted IC50 value (1.76 μM).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Seyoum, K. Asres and F.K. El-Fiky, Phytochemistry, 67, 2058 (2006); https://doi.org/10.1016/j.phytochem.2006.07.002.
- M. Dekker, in ed.: O.R. Fennerma, Food Chemistry, New York, p. 283 (1986).
- S.Tarigan, Jurnal Kultura, 10, 1 (2009).
- J. Wang, R.G. Zhou, T. Wu, T. Yang, Q.-X. Qin, L. Li, B. Yang and J. Yang, J. Chem. Res., 36, 121 (2012); https://doi.org/10.3184/174751912X13285269293913.
- G. Perwira Kasmui and S. Hadisaputro, Indo. J. Chem. Sci., 4, 3 (2015).
- F.K. Nisa, “Uji Aktivitas Senyawa Khrisin Sebagai Antioksidan dengan Modifikasi Gugus pada Cincin Aktifnya Menggunakan Metode RM 1 dan Ab Initio”, Universitas Negeri Semarang, (2013).
- H.D. Pranowo, T.H. Siregar and Mudasir, Indo. J. Chem., 3, 111 (2003).
- H. Hart, L.E. Craine and D.J. Hart, Organic Chemistry: A Short Course, California, edn 11 (2003).
- L. Ben-guo, Y. Ji-guo and G. Ye, J. Food Sci., 31, 167 (2010).
- H.M. Bi, J.P. Hu, F.Y. You, M.M. Gao and C.H. Dong, Asian J. Chem., 26, 5947 (2014); https://doi.org/10.14233/ajchem.2014.16341.
- S. Hazarika, D. Konwar and M.J. Bora, Asian J. Chem., 26, 5073 (2014); https://doi.org/10.14233/ajchem.2014.16320.
References
A. Seyoum, K. Asres and F.K. El-Fiky, Phytochemistry, 67, 2058 (2006); https://doi.org/10.1016/j.phytochem.2006.07.002.
M. Dekker, in ed.: O.R. Fennerma, Food Chemistry, New York, p. 283 (1986).
S.Tarigan, Jurnal Kultura, 10, 1 (2009).
J. Wang, R.G. Zhou, T. Wu, T. Yang, Q.-X. Qin, L. Li, B. Yang and J. Yang, J. Chem. Res., 36, 121 (2012); https://doi.org/10.3184/174751912X13285269293913.
G. Perwira Kasmui and S. Hadisaputro, Indo. J. Chem. Sci., 4, 3 (2015).
F.K. Nisa, “Uji Aktivitas Senyawa Khrisin Sebagai Antioksidan dengan Modifikasi Gugus pada Cincin Aktifnya Menggunakan Metode RM 1 dan Ab Initio”, Universitas Negeri Semarang, (2013).
H.D. Pranowo, T.H. Siregar and Mudasir, Indo. J. Chem., 3, 111 (2003).
H. Hart, L.E. Craine and D.J. Hart, Organic Chemistry: A Short Course, California, edn 11 (2003).
L. Ben-guo, Y. Ji-guo and G. Ye, J. Food Sci., 31, 167 (2010).
H.M. Bi, J.P. Hu, F.Y. You, M.M. Gao and C.H. Dong, Asian J. Chem., 26, 5947 (2014); https://doi.org/10.14233/ajchem.2014.16341.
S. Hazarika, D. Konwar and M.J. Bora, Asian J. Chem., 26, 5073 (2014); https://doi.org/10.14233/ajchem.2014.16320.