Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Thermal Properties of Copper Nanoparticles
Corresponding Author(s) : Ajit Joshi
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Copper nanoparticles have been synthesized by simple chemical precipitation method and showed versatile thermal, mechanical, magnetic and electrical properties. Copper nanoparticles have been synthesized in following two steps, in step-1st, synthesis of polymer metal complex and in 2nd step formation of copper nanoparticles. Polymer metal complex is confirmed by IR spectroscopy and XRD confirmed by size of nanoparticles is 13.13 nm, Crystal system is orthorhombic, Bravais lattice is primitive, space group pccn(56) and 2q = 42.045. Thermal stability is confirmed by TGA and the compound is very slow (rate of 3 %) loss in weight per 100 °C increase in the temperature up to 900 °C. It shows that 70 % thermal stability of the compound at 900 °C. Endothermic nature of copper nanoparticles has been confirmed by DSC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Jumaa, M. Chasib, M.K. Hamid and R. Al-Haddad, Nanosci. Nanotechnol. Res., 2, 1 (2014); https://doi.org/10.12691/nnr-2-1-1.
- R.J. Cava, Science, 247, 656 (1990); https://doi.org/10.1126/science.247.4943.656.
- J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura and S. Uchida, Nature, 375, 561 (1995); https://doi.org/10.1038/375561a0.
- P. Singh, A. Katyal, R. Kalra and R. Chandra, Tetrahedron Lett., 49, 727 (2008); https://doi.org/10.1016/j.tetlet.2007.11.106.
- H.S. Kim, S. Dhage, D.E. Shim and H.T. Hahn, Appl. Phys., A Mater. Sci. Process., 97, 791 (2009); https://doi.org/10.1007/s00339-009-5360-6.
- Y. Lee, J. Choi, K.J. Lee, N.E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008); https://doi.org/10.1088/0957-4484/19/41/415604.
- J.Z. Zhang and C. Noguez, Plasmonics, 3, 127 (2008); https://doi.org/10.1007/s11468-008-9066-y.
- C.E. Sabastine and G. Fanchini, Dissertation, The University of Western Ontario, Ontario, Canada (2012).
- R. Kaur, C. Giordano, M. Gradzielski and S.K. Mehta, Chem. Asian J., 9, 189 (2014); https://doi.org/10.1002/asia.201300809.
- M. Quinten, Optical Properties of Nanoparticle Systems: Mie and beyond, Wiley-VCH, Germany (2011).
- P.K. Jain, X. Huang, I.H. El-Sayed and M.A. El-Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804.
- X.-F. Tang, Z.-G. Yang and W.-J. Wang, Colloids Surf. A Physicochem. Eng. Asp., 360, 99 (2010); https://doi.org/10.1016/j.colsurfa.2010.02.011.
- B. Lee, Y. Kim, S. Yang, I. Jeong and J. Moon, Curr. Appl. Phys., 9, e157 (2009); https://doi.org/10.1016/j.cap.2009.03.008.
- A.M. Stefan, Plasmonics: Fundamentals and Applications, Springer (2007).
- E. Darezereshki and F. Bakhtiari, J. Min. Metall. Sect. B-Metall., 47, 73 (2011); https://doi.org/10.2298/JMMB1101073D.
- W.T. Yao, S.H. Yu, Y. Zhou, J. Jiang, Q.S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B, 109, 14011 (2005); https://doi.org/10.1021/jp0517605.
- J. Zhu, D. Li, H. Chen, X. Yang, L. Lu and X. Wang, Mater. Lett., 58, 3324 (2004); https://doi.org/10.1016/j.matlet.2004.06.031.
- G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia and G. Martra, Chem. Mater., 14, 1183 (2002); https://doi.org/10.1021/cm011199x.
- X. Cheng, X. Zhang, H. Yin, A. Wang and Y. Xu, Appl. Surf. Sci., 253, 2727 (2006); https://doi.org/10.1016/j.apsusc.2006.05.125.
- Z. Liu and Y. Bando, Adv. Mater., 15, 303 (2003); https://doi.org/10.1002/adma.200390073.
- S.S. Joshi, S.F. Patil, V. Iyer and S. Mahumuni, Nanostruct. Mater., 10, 1135 (1998); https://doi.org/10.1016/S0965-9773(98)00153-6.
- D.H. Chen and S.H. Wu, Chem. Mater., 12, 1354 (2000); https://doi.org/10.1021/cm991167y.
- B.K. Park, D. Kim, S. Jeong, J. Moon and J.S. Kim, Thin Solid Films, 515, 7706 (2007); https://doi.org/10.1016/j.tsf.2006.11.142.
- H.L. Aye, S. Choopun and T. Chairuangsri, Adv. Mater. Res., 93-94, 83 (2010); https://doi.org/10.4028/www.scientific.net/AMR.93-94.83.
- S.H. Wu and D.H. Chen, J. Colloid Interface Sci., 273, 165 (2004); https://doi.org/10.1016/j.jcis.2004.01.071
References
T. Jumaa, M. Chasib, M.K. Hamid and R. Al-Haddad, Nanosci. Nanotechnol. Res., 2, 1 (2014); https://doi.org/10.12691/nnr-2-1-1.
R.J. Cava, Science, 247, 656 (1990); https://doi.org/10.1126/science.247.4943.656.
J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura and S. Uchida, Nature, 375, 561 (1995); https://doi.org/10.1038/375561a0.
P. Singh, A. Katyal, R. Kalra and R. Chandra, Tetrahedron Lett., 49, 727 (2008); https://doi.org/10.1016/j.tetlet.2007.11.106.
H.S. Kim, S. Dhage, D.E. Shim and H.T. Hahn, Appl. Phys., A Mater. Sci. Process., 97, 791 (2009); https://doi.org/10.1007/s00339-009-5360-6.
Y. Lee, J. Choi, K.J. Lee, N.E. Stott and D. Kim, Nanotechnology, 19, 415604 (2008); https://doi.org/10.1088/0957-4484/19/41/415604.
J.Z. Zhang and C. Noguez, Plasmonics, 3, 127 (2008); https://doi.org/10.1007/s11468-008-9066-y.
C.E. Sabastine and G. Fanchini, Dissertation, The University of Western Ontario, Ontario, Canada (2012).
R. Kaur, C. Giordano, M. Gradzielski and S.K. Mehta, Chem. Asian J., 9, 189 (2014); https://doi.org/10.1002/asia.201300809.
M. Quinten, Optical Properties of Nanoparticle Systems: Mie and beyond, Wiley-VCH, Germany (2011).
P.K. Jain, X. Huang, I.H. El-Sayed and M.A. El-Sayed, Acc. Chem. Res., 41, 1578 (2008); https://doi.org/10.1021/ar7002804.
X.-F. Tang, Z.-G. Yang and W.-J. Wang, Colloids Surf. A Physicochem. Eng. Asp., 360, 99 (2010); https://doi.org/10.1016/j.colsurfa.2010.02.011.
B. Lee, Y. Kim, S. Yang, I. Jeong and J. Moon, Curr. Appl. Phys., 9, e157 (2009); https://doi.org/10.1016/j.cap.2009.03.008.
A.M. Stefan, Plasmonics: Fundamentals and Applications, Springer (2007).
E. Darezereshki and F. Bakhtiari, J. Min. Metall. Sect. B-Metall., 47, 73 (2011); https://doi.org/10.2298/JMMB1101073D.
W.T. Yao, S.H. Yu, Y. Zhou, J. Jiang, Q.S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B, 109, 14011 (2005); https://doi.org/10.1021/jp0517605.
J. Zhu, D. Li, H. Chen, X. Yang, L. Lu and X. Wang, Mater. Lett., 58, 3324 (2004); https://doi.org/10.1016/j.matlet.2004.06.031.
G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia and G. Martra, Chem. Mater., 14, 1183 (2002); https://doi.org/10.1021/cm011199x.
X. Cheng, X. Zhang, H. Yin, A. Wang and Y. Xu, Appl. Surf. Sci., 253, 2727 (2006); https://doi.org/10.1016/j.apsusc.2006.05.125.
Z. Liu and Y. Bando, Adv. Mater., 15, 303 (2003); https://doi.org/10.1002/adma.200390073.
S.S. Joshi, S.F. Patil, V. Iyer and S. Mahumuni, Nanostruct. Mater., 10, 1135 (1998); https://doi.org/10.1016/S0965-9773(98)00153-6.
D.H. Chen and S.H. Wu, Chem. Mater., 12, 1354 (2000); https://doi.org/10.1021/cm991167y.
B.K. Park, D. Kim, S. Jeong, J. Moon and J.S. Kim, Thin Solid Films, 515, 7706 (2007); https://doi.org/10.1016/j.tsf.2006.11.142.
H.L. Aye, S. Choopun and T. Chairuangsri, Adv. Mater. Res., 93-94, 83 (2010); https://doi.org/10.4028/www.scientific.net/AMR.93-94.83.
S.H. Wu and D.H. Chen, J. Colloid Interface Sci., 273, 165 (2004); https://doi.org/10.1016/j.jcis.2004.01.071