Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Study of Reaction Mechanism between N,N-Dimethyl acrylamide and Carbazole Derivatives Catalyzed by Palladium(II)
Corresponding Author(s) : Y.Q. Zhu
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
The reaction mechanism between N,N-dimethyl acrylamide and carbazole derivatives catalyzed by palladium acetate has been investigated by using density functional theory (DFT) with M06 functional. The computational results indicate that the reaction without catalyst reacts via one pathway with a high energy barrier of 254.57 kJ mol-1. While the reaction can happen through two approaches to generate the same product with the existence of palladium acetate catalysis. Furthermore, the catalyst is better to depart from the product as a whole part. And the determining step of dominant pathway in the Pd-catalyzed reaction is the formation of C-N bond which has an energy barrier of 137.91 kJ mol-1. As a result, palladium catalyst not only changes the reaction mechanism, but also decreases the energy barrier significantly which stimulated the reaction well. This study illustrates the reaction mechanism and has a guiding significance for new catalysts designing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Xia, H.Y. Niu, G.R. Qu and H.M. Guo, Org. Lett., 14, 5546 (2012); https://doi.org/10.1021/ol302640e.
- Y. Wang, D. Wei, Y. Wang, W. Zhang and M. Tang, ACS Catal., 6, 279 (2016); https://doi.org/10.1021/acscatal.5b01710.
- S. Pan and T. Shibata, ACS Catal., 3, 704 (2013); https://doi.org/10.1021/cs400066q.
- C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat. Chem., 2, 1044 (2010); https://doi.org/10.1038/nchem.862.
- Y.Q. Zhu, H. Su, J.L. Tang and Y.Q. Yang, Comput. Theor. Chem., 1068, 47 (2015); https://doi.org/10.1016/j.comptc.2015.06.010.
- C. Valente, S. Calimsiz, K.H. Hoi, D. Mallik, M. Sayah and M.G. Organ, Angew. Chem. Int. Ed., 51, 3314 (2012); https://doi.org/10.1002/anie.201106131.
- A. Pommella, G. Tomaiuolo, A. Chartoire, S. Caserta, G. Toscano, S.P. Nolan and S. Guido, Chem. Eng. J., 223, 578 (2013); https://doi.org/10.1016/j.cej.2013.03.070.
- E.K. Bullough, M.A. Little and C.E. Willans, J. Organomet., 32, 570 (2013); https://doi.org/10.1021/om301085s.
- A. Petit, J. Flygare, A.T. Miller, G. Winkel and D.H. Ess, Org. Lett., 14, 3680 (2012); https://doi.org/10.1021/ol301521n.
- S. Ye, H. Wang, Q. Xiao, Q. Ding and J. Wu, Adv. Synth. Catal., 356, 3225 (2014); https://doi.org/10.1002/adsc.201400334.
- B. Lopez, A. Rodriguez, D. Santos, J. Albert, X. Ariza, J. Garcia and J. Granell, Chem. Commun., 47, 1054 (2011); https://doi.org/10.1039/C0CC03478A.
- L. Chen, C. Bruneau, P.H. Dixneuf and H. Doucet, Tetrahedron, 69, 4381 (2013); https://doi.org/10.1016/j.tet.2012.12.061.
- W. Liu, H. Cao, H. Zhang, H. Zhang, K.H. Chung, C. He, H. Wang, F.Y. Kwong and A. Lei, J. Am. Chem. Soc., 132, 16737 (2010); https://doi.org/10.1021/ja103050x.
- A.J. Hickman and M.S. Sanford, Nature, 484, 177 (2012); https://doi.org/10.1038/nature11008.
- T.W. Lyons and M.S. Sanford, Chem. Rev., 110, 1147 (2010); https://doi.org/10.1021/cr900184e.
- F. Liu, G. Feng, M. Lin, C. Wang, B. Hu and C. Qi, J. Colloid Interface Sci., 435, 83 (2014); https://doi.org/10.1016/j.jcis.2014.08.010.
- N.C. Bruno, M.T. Tudge and S.L. Buchwald, Chem. Sci., 4, 916 (2013); https://doi.org/10.1039/C2SC20903A.
- M. Sharif, K. Shoaib, S. Ahmed, J. Iqbal, Z.A. Abilov, A. Spannenberg and P. Langer, Tetrahedron Lett., 57, 3060 (2016); https://doi.org/10.1016/j.tetlet.2016.05.041.
- Z. Mandegani, M. Asadi, Z. Asadi, A. Mohajeri, N. Iranpoor and A. Omidvar, Green Chem., 17, 3326 (2015); https://doi.org/10.1039/C5GC00616C.
- A.K. Rathi, M.B. Gawande, J. Pechousek, J. Tucek, C. Aparicio, M. Petr, O. Tomanec, R. Krikavova, Z. Travnicek, R.S. Varma and R. Zboril, Green Chem., 18, 2363 (2016); https://doi.org/10.1039/C5GC02264A.
- A. Biffis, M. Zecca and M. Basato, J. Mol. Catal. Chem., 173, 249 (2001); https://doi.org/10.1016/S1381-1169(01)00153-4.
- Z. Yang and J. Zhou, J. Am. Chem. Soc., 134, 11833 (2012); https://doi.org/10.1021/ja304099j.
- C. Cordovilla, C. Bartolomé, J.M. Martínez-Ilarduya and P. Espinet, ACS Catal., 5, 3040 (2015); https://doi.org/10.1021/acscatal.5b00448.
- S.M. McAfee, J.S.J. McCahill, C.M. Macaulay, A.D. Hendsbee and G.C. Welch, RSC Adv., 5, 26097 (2015); https://doi.org/10.1039/C5RA02468D.
- M. Hervé, G. Lefèvre, E.A. Mitchell, B.U. Maes and A. Jutand, Chem. Eur. J., 21, 18401 (2015); https://doi.org/10.1002/chem.201503309.
- N.P. Cheval, A. Dikova, A. Blanc, J.M. Weibel and P. Pale, Chem. Eur. J., 19, 8765 (2013); https://doi.org/10.1002/chem.201300127.
- A. Jutand and G. Lefèvre, in ed.: J. Mortier, Transition Metal Mediated Carbon-Carbon Cross Coupling, In: Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, p. 511 (2016).
- J.D. Way, C. Bergman and F. Wuest, Chem. Commun., 51, 3838 (2015); https://doi.org/10.1039/C5CC00182J.
- R. Chinchilla and C. Nájera, in eds.: B.M. Trost and C.-J. Li, The Sonogashira Reaction, In: Modern Alkyne Chemistry-Catalytic and Atom-Economic Transformations, Wiley-VCH, Weinheim, Chap. 10, pp. 269-297 (2014).
- J. Chung, J. Kim, Y. Jang, S. Byun, T. Hyeon and B.M. Kim, Synfacts, 9, 1246 (2013); https://doi.org/10.1055/s-0033-1340027.
- D.D. Li, T.T. Yuan and G.W. Wang, Chem. Commun., 47, 12789 (2011); https://doi.org/10.1039/c1cc15897j.
- K. Sun, Y. Li, T. Xiong, J. Zhang and Q. Zhang, J. Am. Chem. Soc., 133, 1694 (2011); https://doi.org/10.1021/ja1101695.
- S. Ueda, S. Ali, B.P. Fors and S.L. Buchwald, J. Org. Chem., 77, 2543 (2012); https://doi.org/10.1021/jo202537e.
- D. Takeda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 15, 1242 (2013); https://doi.org/10.1021/ol4001697.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, J.A. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Inc: Wallingford, CT (2010).
- J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007.
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975.
- R.H.W.J. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys., 54, 724 (1971); https://doi.org/10.1063/1.1674902.
- W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys., 56, 2257 (1972); https://doi.org/10.1063/1.1677527.
- V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern and L.A. Curtiss, J. Comput. Chem., 22, 976 (2001); https://doi.org/10.1002/jcc.1058.
- A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064.
- Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x.
- L.E. Roy, P.J. Hay and R.L. Martin, J. Chem. Theory Comput., 4, 1029 (2008); https://doi.org/10.1021/ct8000409.
- J.E. Carpenter and F. Weinhold, J. Mol. Struct. THEOCHEM, 169, 41 (1988); https://doi.org/10.1016/0166-1280(88)80248-3.
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005.
References
R. Xia, H.Y. Niu, G.R. Qu and H.M. Guo, Org. Lett., 14, 5546 (2012); https://doi.org/10.1021/ol302640e.
Y. Wang, D. Wei, Y. Wang, W. Zhang and M. Tang, ACS Catal., 6, 279 (2016); https://doi.org/10.1021/acscatal.5b01710.
S. Pan and T. Shibata, ACS Catal., 3, 704 (2013); https://doi.org/10.1021/cs400066q.
C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou, X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat. Chem., 2, 1044 (2010); https://doi.org/10.1038/nchem.862.
Y.Q. Zhu, H. Su, J.L. Tang and Y.Q. Yang, Comput. Theor. Chem., 1068, 47 (2015); https://doi.org/10.1016/j.comptc.2015.06.010.
C. Valente, S. Calimsiz, K.H. Hoi, D. Mallik, M. Sayah and M.G. Organ, Angew. Chem. Int. Ed., 51, 3314 (2012); https://doi.org/10.1002/anie.201106131.
A. Pommella, G. Tomaiuolo, A. Chartoire, S. Caserta, G. Toscano, S.P. Nolan and S. Guido, Chem. Eng. J., 223, 578 (2013); https://doi.org/10.1016/j.cej.2013.03.070.
E.K. Bullough, M.A. Little and C.E. Willans, J. Organomet., 32, 570 (2013); https://doi.org/10.1021/om301085s.
A. Petit, J. Flygare, A.T. Miller, G. Winkel and D.H. Ess, Org. Lett., 14, 3680 (2012); https://doi.org/10.1021/ol301521n.
S. Ye, H. Wang, Q. Xiao, Q. Ding and J. Wu, Adv. Synth. Catal., 356, 3225 (2014); https://doi.org/10.1002/adsc.201400334.
B. Lopez, A. Rodriguez, D. Santos, J. Albert, X. Ariza, J. Garcia and J. Granell, Chem. Commun., 47, 1054 (2011); https://doi.org/10.1039/C0CC03478A.
L. Chen, C. Bruneau, P.H. Dixneuf and H. Doucet, Tetrahedron, 69, 4381 (2013); https://doi.org/10.1016/j.tet.2012.12.061.
W. Liu, H. Cao, H. Zhang, H. Zhang, K.H. Chung, C. He, H. Wang, F.Y. Kwong and A. Lei, J. Am. Chem. Soc., 132, 16737 (2010); https://doi.org/10.1021/ja103050x.
A.J. Hickman and M.S. Sanford, Nature, 484, 177 (2012); https://doi.org/10.1038/nature11008.
T.W. Lyons and M.S. Sanford, Chem. Rev., 110, 1147 (2010); https://doi.org/10.1021/cr900184e.
F. Liu, G. Feng, M. Lin, C. Wang, B. Hu and C. Qi, J. Colloid Interface Sci., 435, 83 (2014); https://doi.org/10.1016/j.jcis.2014.08.010.
N.C. Bruno, M.T. Tudge and S.L. Buchwald, Chem. Sci., 4, 916 (2013); https://doi.org/10.1039/C2SC20903A.
M. Sharif, K. Shoaib, S. Ahmed, J. Iqbal, Z.A. Abilov, A. Spannenberg and P. Langer, Tetrahedron Lett., 57, 3060 (2016); https://doi.org/10.1016/j.tetlet.2016.05.041.
Z. Mandegani, M. Asadi, Z. Asadi, A. Mohajeri, N. Iranpoor and A. Omidvar, Green Chem., 17, 3326 (2015); https://doi.org/10.1039/C5GC00616C.
A.K. Rathi, M.B. Gawande, J. Pechousek, J. Tucek, C. Aparicio, M. Petr, O. Tomanec, R. Krikavova, Z. Travnicek, R.S. Varma and R. Zboril, Green Chem., 18, 2363 (2016); https://doi.org/10.1039/C5GC02264A.
A. Biffis, M. Zecca and M. Basato, J. Mol. Catal. Chem., 173, 249 (2001); https://doi.org/10.1016/S1381-1169(01)00153-4.
Z. Yang and J. Zhou, J. Am. Chem. Soc., 134, 11833 (2012); https://doi.org/10.1021/ja304099j.
C. Cordovilla, C. Bartolomé, J.M. Martínez-Ilarduya and P. Espinet, ACS Catal., 5, 3040 (2015); https://doi.org/10.1021/acscatal.5b00448.
S.M. McAfee, J.S.J. McCahill, C.M. Macaulay, A.D. Hendsbee and G.C. Welch, RSC Adv., 5, 26097 (2015); https://doi.org/10.1039/C5RA02468D.
M. Hervé, G. Lefèvre, E.A. Mitchell, B.U. Maes and A. Jutand, Chem. Eur. J., 21, 18401 (2015); https://doi.org/10.1002/chem.201503309.
N.P. Cheval, A. Dikova, A. Blanc, J.M. Weibel and P. Pale, Chem. Eur. J., 19, 8765 (2013); https://doi.org/10.1002/chem.201300127.
A. Jutand and G. Lefèvre, in ed.: J. Mortier, Transition Metal Mediated Carbon-Carbon Cross Coupling, In: Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, p. 511 (2016).
J.D. Way, C. Bergman and F. Wuest, Chem. Commun., 51, 3838 (2015); https://doi.org/10.1039/C5CC00182J.
R. Chinchilla and C. Nájera, in eds.: B.M. Trost and C.-J. Li, The Sonogashira Reaction, In: Modern Alkyne Chemistry-Catalytic and Atom-Economic Transformations, Wiley-VCH, Weinheim, Chap. 10, pp. 269-297 (2014).
J. Chung, J. Kim, Y. Jang, S. Byun, T. Hyeon and B.M. Kim, Synfacts, 9, 1246 (2013); https://doi.org/10.1055/s-0033-1340027.
D.D. Li, T.T. Yuan and G.W. Wang, Chem. Commun., 47, 12789 (2011); https://doi.org/10.1039/c1cc15897j.
K. Sun, Y. Li, T. Xiong, J. Zhang and Q. Zhang, J. Am. Chem. Soc., 133, 1694 (2011); https://doi.org/10.1021/ja1101695.
S. Ueda, S. Ali, B.P. Fors and S.L. Buchwald, J. Org. Chem., 77, 2543 (2012); https://doi.org/10.1021/jo202537e.
D. Takeda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 15, 1242 (2013); https://doi.org/10.1021/ol4001697.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, J.A. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Inc: Wallingford, CT (2010).
J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007.
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975.
R.H.W.J. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys., 54, 724 (1971); https://doi.org/10.1063/1.1674902.
W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys., 56, 2257 (1972); https://doi.org/10.1063/1.1677527.
V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern and L.A. Curtiss, J. Comput. Chem., 22, 976 (2001); https://doi.org/10.1002/jcc.1058.
A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064.
Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x.
L.E. Roy, P.J. Hay and R.L. Martin, J. Chem. Theory Comput., 4, 1029 (2008); https://doi.org/10.1021/ct8000409.
J.E. Carpenter and F. Weinhold, J. Mol. Struct. THEOCHEM, 169, 41 (1988); https://doi.org/10.1016/0166-1280(88)80248-3.
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005.