Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-Chemical Properties of LiM0.10Mn1.90O4 (M: Co, Ni, Cr) for Potential Cathode Materials
Corresponding Author(s) : Dyah Purwaningsih
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Transition metal-doped spinel cathode materials of LiM0.1Mn1.9O4 (M: Co, Ni, Cr) were prepared by solid-state reaction. The structure and morphology of the products were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, Rietveld refinement and SEM-EDX. The oxidation states of Mn, Co, Ni and Cr were found to be 3+/4+, 2+, 2+ and 3+, respectively as revealed by X-ray photoelectron spectroscopy. SEM-EDX shows uniform particles and the particle size was about 200-700 nm ranges. The diffraction peaks of the prepared solids corresponded to a single phase of cubic spinel structure with a space group Fd3m. Doping of Co, Ni and Cr causes lattice parameters to decrease. The prepared materials have ionic conductivity where LiCo0.10Mn1.90O4 has the highest capacitance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.E. Aifantis, S.A. Hackney and R.V. Kumar, High Energy Density Lithium Batteries, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
- M. Hu, X. Pang and Z. Zhou, J. Power Sources, 237, 229 (2013); https://doi.org/10.1016/j.jpowsour.2013.03.024.
- J.W. Fergus, J. Power Sources, 195, 939 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.089.
- J. Chen, Materials, 6, 156 (2013); https://doi.org/10.3390/ma6010156.
- J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 147, 269 (2005); https://doi.org/10.1016/j.jpowsour.2005.01.006.
- J.-T. Hwang, S.-B. Park, C.-K. Park and H. Jang, Bull. Korean Chem. Soc., 32, 3952 (2011); https://doi.org/10.5012/bkcs.2011.32.11.3952.
- Q. Liu, S. Wang, H. Tan, Z. Yang and J. Zeng, Energies, 6, 1718 (2013); https://doi.org/10.3390/en6031718.
- J. Yan, H. Liu, Y. Wang, X. Zhao, Y. Mi and B. Xia, Ionics, 21, 1835 (2015); https://doi.org/10.1007/s11581-015-1371-9.
- Y.-P. Fu, C.-H. Lin, Y.-H. Su, J.-H. Jean and S.-H. Wu, Ceram. Int., 30, 1953 (2004); https://doi.org/10.1016/j.ceramint.2003.12.183.
- X. Gu, X. Li, L. Xu and H. Xu, Int. J. Electrochem. Sci., 7, 2504 (2012).
- H.L. Wang, Ph.D. Thesis, 4d Transition Metal Doped LiNi0.5Mn1.5O4 for High Power Lithium Batteries, Department of Mechanical Engineering, National University of Singapore, Singapore (2011).
- M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune and J.M. Rojo, J. Power Sources, 185, 501 (2008); https://doi.org/10.1016/j.jpowsour.2008.06.074.
- G.M. Song, Y.J. Wang and Y. Zhou, J. Power Sources, 128, 270 (2004); https://doi.org/10.1016/j.jpowsour.2003.10.002.
- V.G. Kumar, J.S. Gnanaraj, S. Ben-David, D.M. Pickup, E.R.H. van-Eck, A. Gedanken and D. Aurbach, Chem. Mater., 15, 4211 (2003); https://doi.org/10.1021/cm030104j.
- Y.K. Yoon, C.W. Park, H.Y. Ahn, D.H. Kim, Y.S. Lee and J. Kim, J. Phys. Chem. Solids, 68, 780 (2007); https://doi.org/10.1016/j.jpcs.2007.03.028.
- K. Suryakala, G.P. Kalaignan and T. Vasudevan, Int. J. Electrochem. Sci., 1, 372 (2006).
- C.M. Julien and M. Massot, Mater. Sci. Eng., 97, 217 (2003); https://doi.org/10.1016/S0921-5107(02)00582-2.
- D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins and Y. Cui, Nano Lett., 8, 3948 (2008); https://doi.org/10.1021/nl8024328.
- D. Purwaningsih, R. Roto and H. Sutrisno, Adv. Mater. Res., 1101, 134 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1101.134.
- D. Purwaningsih, R. Roto and H. Sutrisno, IOP Conf. Ser. Mater. Sci. Eng., 107, 012033 (2016); https://doi.org/10.1088/1757-899X/107/1/012033.
- D. Purwaningsih, R. Roto, Narsito and H. Sutrisno, Adv. Mater. Res., 1123, 100 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1123.100.
- S. Parvathy, R. Ranjusha, K. Sujith, K.R.V. Subramanian, N. Sivakumar, S.V. Nair and A. Balakrishnan, J. Nanomater., 2012, 1 (2012); https://doi.org/10.1155/2012/259684.
- P. Bowen, J. Dispersion Sci. Technol., 23, 631 (2002); https://doi.org/10.1081/DIS-120015368.
- A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020.
- X. Li, Y. Xu and C. Wang, J. Alloys Comp., 479, 310 (2009); https://doi.org/10.1016/j.jallcom.2008.12.081.
- C.Y. Ouyang, S.Q. Shi and M.S. Lei, J. Alloys Comp., 474, 370 (2009); https://doi.org/10.1016/j.jallcom.2008.06.123.
- P. Martín, M.L. López, C. Pico and M.L. Veiga, Solid State Sci., 9, 521 (2007); https://doi.org/10.1016/j.solidstatesciences.2007.03.023.
References
K.E. Aifantis, S.A. Hackney and R.V. Kumar, High Energy Density Lithium Batteries, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).
M. Hu, X. Pang and Z. Zhou, J. Power Sources, 237, 229 (2013); https://doi.org/10.1016/j.jpowsour.2013.03.024.
J.W. Fergus, J. Power Sources, 195, 939 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.089.
J. Chen, Materials, 6, 156 (2013); https://doi.org/10.3390/ma6010156.
J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 147, 269 (2005); https://doi.org/10.1016/j.jpowsour.2005.01.006.
J.-T. Hwang, S.-B. Park, C.-K. Park and H. Jang, Bull. Korean Chem. Soc., 32, 3952 (2011); https://doi.org/10.5012/bkcs.2011.32.11.3952.
Q. Liu, S. Wang, H. Tan, Z. Yang and J. Zeng, Energies, 6, 1718 (2013); https://doi.org/10.3390/en6031718.
J. Yan, H. Liu, Y. Wang, X. Zhao, Y. Mi and B. Xia, Ionics, 21, 1835 (2015); https://doi.org/10.1007/s11581-015-1371-9.
Y.-P. Fu, C.-H. Lin, Y.-H. Su, J.-H. Jean and S.-H. Wu, Ceram. Int., 30, 1953 (2004); https://doi.org/10.1016/j.ceramint.2003.12.183.
X. Gu, X. Li, L. Xu and H. Xu, Int. J. Electrochem. Sci., 7, 2504 (2012).
H.L. Wang, Ph.D. Thesis, 4d Transition Metal Doped LiNi0.5Mn1.5O4 for High Power Lithium Batteries, Department of Mechanical Engineering, National University of Singapore, Singapore (2011).
M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune and J.M. Rojo, J. Power Sources, 185, 501 (2008); https://doi.org/10.1016/j.jpowsour.2008.06.074.
G.M. Song, Y.J. Wang and Y. Zhou, J. Power Sources, 128, 270 (2004); https://doi.org/10.1016/j.jpowsour.2003.10.002.
V.G. Kumar, J.S. Gnanaraj, S. Ben-David, D.M. Pickup, E.R.H. van-Eck, A. Gedanken and D. Aurbach, Chem. Mater., 15, 4211 (2003); https://doi.org/10.1021/cm030104j.
Y.K. Yoon, C.W. Park, H.Y. Ahn, D.H. Kim, Y.S. Lee and J. Kim, J. Phys. Chem. Solids, 68, 780 (2007); https://doi.org/10.1016/j.jpcs.2007.03.028.
K. Suryakala, G.P. Kalaignan and T. Vasudevan, Int. J. Electrochem. Sci., 1, 372 (2006).
C.M. Julien and M. Massot, Mater. Sci. Eng., 97, 217 (2003); https://doi.org/10.1016/S0921-5107(02)00582-2.
D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins and Y. Cui, Nano Lett., 8, 3948 (2008); https://doi.org/10.1021/nl8024328.
D. Purwaningsih, R. Roto and H. Sutrisno, Adv. Mater. Res., 1101, 134 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1101.134.
D. Purwaningsih, R. Roto and H. Sutrisno, IOP Conf. Ser. Mater. Sci. Eng., 107, 012033 (2016); https://doi.org/10.1088/1757-899X/107/1/012033.
D. Purwaningsih, R. Roto, Narsito and H. Sutrisno, Adv. Mater. Res., 1123, 100 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1123.100.
S. Parvathy, R. Ranjusha, K. Sujith, K.R.V. Subramanian, N. Sivakumar, S.V. Nair and A. Balakrishnan, J. Nanomater., 2012, 1 (2012); https://doi.org/10.1155/2012/259684.
P. Bowen, J. Dispersion Sci. Technol., 23, 631 (2002); https://doi.org/10.1081/DIS-120015368.
A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020.
X. Li, Y. Xu and C. Wang, J. Alloys Comp., 479, 310 (2009); https://doi.org/10.1016/j.jallcom.2008.12.081.
C.Y. Ouyang, S.Q. Shi and M.S. Lei, J. Alloys Comp., 474, 370 (2009); https://doi.org/10.1016/j.jallcom.2008.06.123.
P. Martín, M.L. López, C. Pico and M.L. Veiga, Solid State Sci., 9, 521 (2007); https://doi.org/10.1016/j.solidstatesciences.2007.03.023.