Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effects of Some Hormones on Enzyme Activities of Carbonic Anhydrase from Brain in vitro
Corresponding Author(s) : Nazan Demir
Asian Journal of Chemistry,
Vol. 29 No. 7 (2017): Vol 29 Issue 7
Abstract
Hormones are 3 classes as steroid hormones, peptide and proteohormones and derived hormones from amino acids. The influence of PTH, E2, T3, T4, TSH and cortizole hormones has been investigated on bovine brain carbonic anhydrase in vitro. The effect of each hormone on carbonic anhydrase was investigated by Wilbur-Andersen method modified by Rickly and coworkers. All of the hormones were determined to have inhibition effect, on bovine brain carbonic anhydrase isoenzyme. The I50 values of hormones caused inhibition were determined by means of activity percentage [I] diagrams. The values were PTH, E2, T3, T4, TSH and cortizole were I50: 1.54 × 10-14 M, 1.72 × 10-11 M, 3.6 × 10-8 M, 4.48 × 10-13 M, 5.73 × 10-9 M, 1.22 × 10-11 M for bovine brain carbonic anhydrase, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Hewett-Emmett and R.E. Tashian, Mol. Phylogenet. Evol., 5, 50 (1996); https://doi.org/10.1006/mpev.1996.0006.
- W.S. Sly and P.Y. Hu, Annu. Rev. Biochem., 64, 375 (1995); https://doi.org/10.1146/annurev.bi.64.070195.002111.
- A.J. Kivelä, S. Parkkila, J. Saarnio, T.J. Karttunen, J. Kivelä, A.-K. Parkkila, S. Pastoreková, J. Pastorek, A. Waheed, W.S. Sly and H. Rajaniemi, Histochem. Cell Biol., 114, 197 (2000); https://doi.org/10.1007/s004180000181.
- S. Lindskog, Adv. Inorg. Biochem., 4, 115 (1982).
- S.J. Dodgson, Cellular Physiology and Molecular Genetics. Plenum Press, New York, pp. 3-14 (1991).
- K. Sigler and M. Hofer, Biochim. Biophys. Acta, 1071, 375 (1991); https://doi.org/10.1016/0304-4157(91)90003-F.
- F.P. Veitch and L.C. Blankenship, Nature, 197, 76 (1963); https://doi.org/10.1038/197076a0.
- W.T. Shoaf III and M.E. Jones, Arch. Biochem. Biophys., 139, 130 (1970); https://doi.org/10.1016/0003-9861(70)90054-8.
- S. Mitsuhashi and S. Miyachi, J. Biol. Chem., 271, 28703 (1996); https://doi.org/10.1074/jbc.271.45.28703.
- E. Soltes-Rak, M.E. Mulligan and J.R. Coleman, J. Bacteriol., 179, 769 (1997); https://doi.org/10.1128/jb.179.3.769-774.1997.
- K. Fujikawa-Adachi, I. Nishimori, T. Taguchi and S. Onishi, Genomics, 61, 74 (1999); https://doi.org/10.1006/geno.1999.5938.
- O. Arslan, B. Nalbantoglu, N. Demir, H. Özdemir and Ö.I. Küfrevioglu, Turk. J. Med. Sci., 26, 163 (1996).
- E.E. Rickli, S.A.S. Ghazantar, B.H. Gibbons and J.T. Edsall, J. Biol. Chem., 239, 1065 (1964).
- U.K. Laemmli, Nature, 227, 680 (1970); https://doi.org/10.1038/227680a0.
- R.M. Hoechster, M. Kates and J.H. Questel, Metabolic Inhibitors, vols 3 and 4, Academic Press, New York, pp. 71-89 (1972) and 66-82 (1973).
- G.M. Christensen, D. Olson and B. Riedel, Environ. Res., 29, 247 (1982); https://doi.org/10.1016/0013-9351(82)90026-3.
- F. Botre and C. Botre, in eds.: F. Botre, C. Gros and B.T. Storey, Physiological Implications of Carbonic Anhydrase Facilitated CO2 Diffusion: Coupling to Other Biometabolic Processes, In: Carbonic Anhydrase: From Biochemistry and Genetics to Physiology and Genetics to Physiology and Clinical Medicine; International Workshop On Carbonic Anhydrase, Spoleto, Italy, March 4–7. Xvi 467 p. (1991).
References
D. Hewett-Emmett and R.E. Tashian, Mol. Phylogenet. Evol., 5, 50 (1996); https://doi.org/10.1006/mpev.1996.0006.
W.S. Sly and P.Y. Hu, Annu. Rev. Biochem., 64, 375 (1995); https://doi.org/10.1146/annurev.bi.64.070195.002111.
A.J. Kivelä, S. Parkkila, J. Saarnio, T.J. Karttunen, J. Kivelä, A.-K. Parkkila, S. Pastoreková, J. Pastorek, A. Waheed, W.S. Sly and H. Rajaniemi, Histochem. Cell Biol., 114, 197 (2000); https://doi.org/10.1007/s004180000181.
S. Lindskog, Adv. Inorg. Biochem., 4, 115 (1982).
S.J. Dodgson, Cellular Physiology and Molecular Genetics. Plenum Press, New York, pp. 3-14 (1991).
K. Sigler and M. Hofer, Biochim. Biophys. Acta, 1071, 375 (1991); https://doi.org/10.1016/0304-4157(91)90003-F.
F.P. Veitch and L.C. Blankenship, Nature, 197, 76 (1963); https://doi.org/10.1038/197076a0.
W.T. Shoaf III and M.E. Jones, Arch. Biochem. Biophys., 139, 130 (1970); https://doi.org/10.1016/0003-9861(70)90054-8.
S. Mitsuhashi and S. Miyachi, J. Biol. Chem., 271, 28703 (1996); https://doi.org/10.1074/jbc.271.45.28703.
E. Soltes-Rak, M.E. Mulligan and J.R. Coleman, J. Bacteriol., 179, 769 (1997); https://doi.org/10.1128/jb.179.3.769-774.1997.
K. Fujikawa-Adachi, I. Nishimori, T. Taguchi and S. Onishi, Genomics, 61, 74 (1999); https://doi.org/10.1006/geno.1999.5938.
O. Arslan, B. Nalbantoglu, N. Demir, H. Özdemir and Ö.I. Küfrevioglu, Turk. J. Med. Sci., 26, 163 (1996).
E.E. Rickli, S.A.S. Ghazantar, B.H. Gibbons and J.T. Edsall, J. Biol. Chem., 239, 1065 (1964).
U.K. Laemmli, Nature, 227, 680 (1970); https://doi.org/10.1038/227680a0.
R.M. Hoechster, M. Kates and J.H. Questel, Metabolic Inhibitors, vols 3 and 4, Academic Press, New York, pp. 71-89 (1972) and 66-82 (1973).
G.M. Christensen, D. Olson and B. Riedel, Environ. Res., 29, 247 (1982); https://doi.org/10.1016/0013-9351(82)90026-3.
F. Botre and C. Botre, in eds.: F. Botre, C. Gros and B.T. Storey, Physiological Implications of Carbonic Anhydrase Facilitated CO2 Diffusion: Coupling to Other Biometabolic Processes, In: Carbonic Anhydrase: From Biochemistry and Genetics to Physiology and Genetics to Physiology and Clinical Medicine; International Workshop On Carbonic Anhydrase, Spoleto, Italy, March 4–7. Xvi 467 p. (1991).