Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Heating Behaviour of Iron Oxide Nanomaterials via Magnetic Nanoparticle Hyperthermia
Corresponding Author(s) : C.R. Laili
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
In this studies, magnetic iron oxide nanomaterial (ION) was synthesized in order to demonstrate its hyperthermia behaviour at three different frequencies. The synthesized iron oxide nanomaterial was characterized to obtain its physical properties such as surface morphology, particle size and magnetism. The iron oxide nanomaterial were subjected to hyperthermia exposed at 165.1, 173.9 and 737.5 kHz. The results obtained showed that the iron oxide nanomaterial generated good heating behaviour and were dependent on the frequencies applied with increased heating behaviour at higher frequencies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M.D. Coey, Magnetism and Magnetic Materials, p. 1 (2010).
- A. Jordan, R. Scholz, P. Wust, H. Fähling and R. Felix, J. Magn. Magn. Mater., 201, 413 (1999); doi:10.1016/S0304-8853(99)00088-8.
- C.B. Murray, C.R. Kagan and M.G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000); doi:10.1146/annurev.matsci.30.1.545.
- L. Mazzola, Nat. Biotechnol., 21, 1137 (2003); doi:10.1038/nbt1003-1137.
- R. Paull, J. Wolfe, P. Hebert and M. Sinkula, Nat. Biotechnol., 21, 1144 (2003); doi:10.1038/nbt1003-1144.
- Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson, J. Phys. D Appl. Phys., 36, R167 (2003); doi:10.1088/0022-3727/36/13/201.
- S. Lecommandoux, O. Sandre, F. Checot and R. Perzynski, Prog. Solid State Chem., 34, 171 (2006); doi:10.1016/j.progsolidstchem.2005.11.050.
- S.R. Bhattarai, R.B. Kc, S.Y. Kim, M. Sharma, M.S. Khil, P.H. Hwang, G.H. Chung and H.Y. Kim, J. Nanobiol., 6, 1 (2008); doi:10.1186/1477-3155-6-1.
- F. Lu, A. Popa, S. Zhou, J.J. Zhu and A.C.S. Samia, Chem. Commun., 49, 11436 (2013); doi:10.1039/c3cc46658b.
- S. Nappini, M. Bonini, F.B. Bombelli, F. Pineider, C. Sangregorio, P. Baglioni and B. Norden, Soft Matter, 7, 1025 (2011); doi:10.1039/C0SM00789G.
- E. Lima, T.E. Torres, L.M. Rossi, H.R. Rechenberg, T.S. Berquo, A. Ibarra, C. Marquina, M.R. Ibarra and G.F. Goya, J. Nanopart. Res., 15, 1654 (2013); doi:10.1007/s11051-013-1654-x.
- R. Hergt, S. Dutz, R. Müller and M. Zeisberger, J. Phys. Condens. Matter, 18, S2919 (2006); doi:10.1088/0953-8984/18/38/S26.
- M.T. López-López, J.D.G. Durán, A.V. Delgado and F. González-Caballero, J. Colloid Interf. Sci., 291, 144 (2005); doi:10.1016/j.jcis.2005.04.099.
- W. Voit, D.K. Kim, W. Zapka, M. Muhammed and K.V. Rao, Mater. Res. Soc., 676, 781 (2001); doi:10.1557/PROC-676-Y7.8.
- F.O. Cedeno, M.M. Prieto, A. Espina and J.R. Garcia, Thermochim. Acta, 369, 39 (2001); doi:10.1016/S0040-6031(00)00752-8.
- T. Atsumi, B. Jeyadevan, Y. Sato and K. Tohji, J. Magn. Magn. Mater., 310, 2841 (2007); doi:10.1016/j.jmmm.2006.11.063.
- R.E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002); doi:10.1016/S0304-8853(02)00706-0.
- P.D. Pino and B. Pelaz, in eds: J.M. de la Fuente and V. Grazu, Hyperthermia Using Inorganic Nanoparticles, In: Nanobiotechnology: Inorganic Nanoparticles vs. Organic Nanoparticles, Elsevier, Amsterdam, vol. 4, Chap. 13, pp. 309-319, (2012).
References
J.M.D. Coey, Magnetism and Magnetic Materials, p. 1 (2010).
A. Jordan, R. Scholz, P. Wust, H. Fähling and R. Felix, J. Magn. Magn. Mater., 201, 413 (1999); doi:10.1016/S0304-8853(99)00088-8.
C.B. Murray, C.R. Kagan and M.G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000); doi:10.1146/annurev.matsci.30.1.545.
L. Mazzola, Nat. Biotechnol., 21, 1137 (2003); doi:10.1038/nbt1003-1137.
R. Paull, J. Wolfe, P. Hebert and M. Sinkula, Nat. Biotechnol., 21, 1144 (2003); doi:10.1038/nbt1003-1144.
Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson, J. Phys. D Appl. Phys., 36, R167 (2003); doi:10.1088/0022-3727/36/13/201.
S. Lecommandoux, O. Sandre, F. Checot and R. Perzynski, Prog. Solid State Chem., 34, 171 (2006); doi:10.1016/j.progsolidstchem.2005.11.050.
S.R. Bhattarai, R.B. Kc, S.Y. Kim, M. Sharma, M.S. Khil, P.H. Hwang, G.H. Chung and H.Y. Kim, J. Nanobiol., 6, 1 (2008); doi:10.1186/1477-3155-6-1.
F. Lu, A. Popa, S. Zhou, J.J. Zhu and A.C.S. Samia, Chem. Commun., 49, 11436 (2013); doi:10.1039/c3cc46658b.
S. Nappini, M. Bonini, F.B. Bombelli, F. Pineider, C. Sangregorio, P. Baglioni and B. Norden, Soft Matter, 7, 1025 (2011); doi:10.1039/C0SM00789G.
E. Lima, T.E. Torres, L.M. Rossi, H.R. Rechenberg, T.S. Berquo, A. Ibarra, C. Marquina, M.R. Ibarra and G.F. Goya, J. Nanopart. Res., 15, 1654 (2013); doi:10.1007/s11051-013-1654-x.
R. Hergt, S. Dutz, R. Müller and M. Zeisberger, J. Phys. Condens. Matter, 18, S2919 (2006); doi:10.1088/0953-8984/18/38/S26.
M.T. López-López, J.D.G. Durán, A.V. Delgado and F. González-Caballero, J. Colloid Interf. Sci., 291, 144 (2005); doi:10.1016/j.jcis.2005.04.099.
W. Voit, D.K. Kim, W. Zapka, M. Muhammed and K.V. Rao, Mater. Res. Soc., 676, 781 (2001); doi:10.1557/PROC-676-Y7.8.
F.O. Cedeno, M.M. Prieto, A. Espina and J.R. Garcia, Thermochim. Acta, 369, 39 (2001); doi:10.1016/S0040-6031(00)00752-8.
T. Atsumi, B. Jeyadevan, Y. Sato and K. Tohji, J. Magn. Magn. Mater., 310, 2841 (2007); doi:10.1016/j.jmmm.2006.11.063.
R.E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002); doi:10.1016/S0304-8853(02)00706-0.
P.D. Pino and B. Pelaz, in eds: J.M. de la Fuente and V. Grazu, Hyperthermia Using Inorganic Nanoparticles, In: Nanobiotechnology: Inorganic Nanoparticles vs. Organic Nanoparticles, Elsevier, Amsterdam, vol. 4, Chap. 13, pp. 309-319, (2012).