Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Surfactants on Crystallographic and Optical Properties of ZnO Nanoparticles
Corresponding Author(s) : V.D. Mote
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
A study of surfactant treatment on structural and optical properties of ZnO nanoparticles prepared by novel co-precipitation method is reported. X-ray diffraction analysis of all samples shows Wurtzite (hexagonal) structure of ZnO (space group P63mc). The lattice parameters of the system were varying with changing of surfactant. The unit cell volume and u parameter (z coordinate of the oxygen atoms) of the Wurtzite structure of ZnO varying with changing surfactant. The average crystallite size of all samples was in the range of 23-30 nm. The optical energy band gap of pure and surfactant treatment of ZnO nanoparticles was in the range of 2.60-3.20 eV. Estimate lattice strain and stress considering peak broadening of ZnO nanoparticles. It is suggested that the synthesized pure and surfactant treatment ZnO nanoparticles can be good spintronics and solar cell applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.R. Harbour and M.L. Hair, J. Phys. Chem., 83, 652 (1979); doi:10.1021/j100469a003.
- P. Mitra, A. Chatterjee and H. Maiti, Mater. Lett., 35, 33 (1998); doi:10.1016/S0167-577X(97)00215-2.
- T.K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990); doi:10.1111/j.1151-2916.1990.tb05232.x.
- A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Lumin., 90, 123 (2000); doi:10.1016/S0022-2313(99)00599-2.
- S. Hotchandani and P.V. Kamat, J. Electrochem. Soc., 139, 1630 (1992); doi:10.1149/1.2069468.
- S. Sakohara, L.D. Tickanen and M.A. Anderson, J. Phys. Chem., 96, 11086 (1992); doi:10.1021/j100205a084.
- H.K. Park, D.K. Kim and C.H. Kim, J. Am. Ceram. Soc., 80, 743 (1997); doi:10.1111/j.1151-2916.1997.tb02891.x.
- T.T. Kodas, Adv. Mater., 1, 180 (1989); doi:10.1002/adma.19890010602.
- B.P. Zhang, N.Y. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki and H. Koinuma, J. Phys. Chem. B, 108, 10899 (2004); doi:10.1021/jp048602i.
- G.Z. Shen, Y. Bando and Ch.J. Lee, J. Phys. Chem. B, 109, 10578 (2005); doi:10.1021/jp051078a.
- H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li and D.L. Que, Cryst. Growth Des., 5, 547 (2005); doi:10.1021/cg049727f.
- B. Liu and H.C. Zeng, Langmuir, 20, 4196 (2004); doi:10.1021/la035264o.
- J.U. Brehm, M. Winterer and H. Hahn, J. Appl. Phys., 100, 064311 (2006); doi:10.1063/1.2349430.
- T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger and A.R. Rosen, Nanostruct. Mater., 11, 103 (1999); doi:10.1016/S0965-9773(99)00023-9.
- A.R. Stokes and A.J.C. Wilson, Proc. Phys. Soc., 56, 174 (1944); doi:10.1088/0959-5309/56/3/303.
- J.K. Salem and T.M. Hammad, J. Mater. Sci. Eng., 3, 38 (2009); doi:10.17265/2161-6213/2009.12.007.
References
J.R. Harbour and M.L. Hair, J. Phys. Chem., 83, 652 (1979); doi:10.1021/j100469a003.
P. Mitra, A. Chatterjee and H. Maiti, Mater. Lett., 35, 33 (1998); doi:10.1016/S0167-577X(97)00215-2.
T.K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990); doi:10.1111/j.1151-2916.1990.tb05232.x.
A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Lumin., 90, 123 (2000); doi:10.1016/S0022-2313(99)00599-2.
S. Hotchandani and P.V. Kamat, J. Electrochem. Soc., 139, 1630 (1992); doi:10.1149/1.2069468.
S. Sakohara, L.D. Tickanen and M.A. Anderson, J. Phys. Chem., 96, 11086 (1992); doi:10.1021/j100205a084.
H.K. Park, D.K. Kim and C.H. Kim, J. Am. Ceram. Soc., 80, 743 (1997); doi:10.1111/j.1151-2916.1997.tb02891.x.
T.T. Kodas, Adv. Mater., 1, 180 (1989); doi:10.1002/adma.19890010602.
B.P. Zhang, N.Y. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki and H. Koinuma, J. Phys. Chem. B, 108, 10899 (2004); doi:10.1021/jp048602i.
G.Z. Shen, Y. Bando and Ch.J. Lee, J. Phys. Chem. B, 109, 10578 (2005); doi:10.1021/jp051078a.
H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li and D.L. Que, Cryst. Growth Des., 5, 547 (2005); doi:10.1021/cg049727f.
B. Liu and H.C. Zeng, Langmuir, 20, 4196 (2004); doi:10.1021/la035264o.
J.U. Brehm, M. Winterer and H. Hahn, J. Appl. Phys., 100, 064311 (2006); doi:10.1063/1.2349430.
T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger and A.R. Rosen, Nanostruct. Mater., 11, 103 (1999); doi:10.1016/S0965-9773(99)00023-9.
A.R. Stokes and A.J.C. Wilson, Proc. Phys. Soc., 56, 174 (1944); doi:10.1088/0959-5309/56/3/303.
J.K. Salem and T.M. Hammad, J. Mater. Sci. Eng., 3, 38 (2009); doi:10.17265/2161-6213/2009.12.007.