Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Properties of Alkyl Chain Substituted Naphthalenetetracarboxylic Monoanhydride Monoimides and Unsymmetrically Substituted Naphthalene Derivatives
Corresponding Author(s) : Banu Koz
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
1,4,5,8-Naphthalenedianhydride is converted to N-(2-ethylhexyl)-1,4,5,8-naphthalenetetracarboxylic monoanhydride monoimide (2a) and N-(2-hydroxyethyl)-1,4,5,8-naphthalenetetracarboxylic monoanhydride monoimide (2c) through the potassium salt prepared from a reaction with potassium hydroxide. N-Dodecyl-1,4,5,8-naphthalenetetracarboxylic monoanhydride monoimide (2b) was prepared by the condensation reaction of 1,4,5,8-naphthalenedianhydride with dodecylamine. Naphthalene-1,4-N-(2-ethylhexyl)-imide-N-ethyl-1H-benzo[d]imidazol-5-carboxylate and naphthalene-1,4-N-dodecyl-imide-N-ethyl-1H-benzo[d]imidazol-5-carboxylate were prepared by the condensation reaction of N-alkyl-1,4,5,8-naphthalenetetracarboxylic monoanhydride monoimide (alkyl = 2-ethylhexyl and dodecyl) with ethyl 3,4-diaminobenzoate. Molecular structures and electrochemical properties of all naphthalene derivatives were determined. Their thermal properties were also studied by thermal gravimetric analysis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Peumans, A. Yakimov and S.R. Forrest, J. Appl. Phys., 93, 3693 (2003); doi:10.1063/1.1534621.
- N. Peyghambarian and R.A. Norwood, Optics Photon. News, 16, 28 (2005); doi:10.1364/OPN.16.4.000028.
- C.W. Tang, Appl. Phys. Lett., 48, 183 (1986); doi:10.1063/1.96937.
- C.J. Brabec, N.S. Sariciftci and J.C. Hummelen, Adv. Funct. Mater., 11, 15 (2001); doi:10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A.
- M.T. Bernius, M. Inbasekaran, J. O’Brien and W. Wu, Adv. Mater., 12, 1737 (2000); doi:10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N.
- Y.Z. Wang, R.G. Sun, D.K. Wang, T.M. Swager and A. Epstein, Appl. Phys. Lett., 74, 2593 (1999); doi:10.1063/1.123952.
- J. Rostalski and D. Meissner, Sol. Energy Mater. Sol. Cells, 61, 87 (2000); doi:10.1016/S0927-0248(99)00099-9.
- M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth and D. Meissner, Sol. Energy Mater. Sol. Cells, 61, 97 (2000); doi:10.1016/S0927-0248(99)00100-2.
- K. Takahashi, N. Kuraya, T. Yamaguchi, T. Komura and K. Murata, Sol. Energy Mater. Sol. Cells, 61, 403 (2000); doi:10.1016/S0927-0248(99)00163-4.
- M. Pfeiffer, A. Beyer, B. Plönnigs, A. Nollau, T. Fritzz, K. Leo, D. Schlettwein, S. Hiller and D. Wöhrle, Sol. Energy Mater. Sol. Cells, 63, 83 (2000); doi:10.1016/S0927-0248(00)00022-2.
- M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agranovich and K. Leo, in eds.: F. Kajzar and V. Agranovich, Multiphoton and Light Driven Multielectron Processes: Materials, Phenomena, Applications, NATO Advanced Research Workshop, Kluwer Dordrecht, The Netherlands, p. 123 (2000).
- R.H. Friend, M. Granström, K. Petritsch, A.C. Arias, A. Lux and M.R. Andersson, Nature, 395, 257 (1998); doi:10.1038/26183.
- C.C. Leznoff, Phthalocyanines, Properties and Applications, VCH, New York (1989).
- M. Hiramoto, H. Fujiwara and M. Yokoyama, Appl. Phys. Lett., 58, 1062 (1991); doi:10.1063/1.104423.
- M. Hiramoto, H. Fukusumi and M. Yokoyama, Appl. Phys. Lett., 61, 2580 (1992); doi:10.1063/1.108133.
- H. Tröster, Dyes Pigments, 4, 171 (1983); doi:10.1016/0143-7208(83)80015-1.
- M.J. Fuller and M.R. Wasielewski, J. Phys. Chem. B, 105, 7216 (2001); doi:10.1021/jp011561v.
- I. Yildiz-Oren, I. Yalcin, E. Aki-Sener and N. Ucarturk, Eur. J. Med. Chem., 39, 291 (2004); doi:10.1016/j.ejmech.2003.11.014.
- H. Gilman, R. Adams, H.T. Clarke, J.B. Conant, C.S. Marvel, C.R. Noller and F.C. Whitmore, Organic Synthesis Collective, John Wiley & Sons, Inc, New York, edn 2, vol. 1, pp. 237–238 (1941).
- H.M. Koepp, H. Wendt and H. Strehlow, Z. Elektrochem., 64, 483 (1960); doi:10.1002/bbpc.19600640406.
- J.L. Bredas, R. Silbey, D.S. Boudreaux and R.R. Chance, J. Am. Chem. Soc., 105, 6555 (1983); doi:10.1021/ja00360a004.
- D. Uzun, M.E. Ozser, K. Yuney, H. Icil and M. Demuth, J. Photochem. Photobiol. Chem., 156, 45 (2003); doi:10.1016/S1010-6030(02)00436-7.
- S. Alp, Ş. Erten, C. Karapire, B. Köz, A.O. Doroshenko and S. Icli, J. Photochem. Photobiol. Chem., 135, 103 (2000); doi:10.1016/S1010-6030(00)00306-3.
References
P. Peumans, A. Yakimov and S.R. Forrest, J. Appl. Phys., 93, 3693 (2003); doi:10.1063/1.1534621.
N. Peyghambarian and R.A. Norwood, Optics Photon. News, 16, 28 (2005); doi:10.1364/OPN.16.4.000028.
C.W. Tang, Appl. Phys. Lett., 48, 183 (1986); doi:10.1063/1.96937.
C.J. Brabec, N.S. Sariciftci and J.C. Hummelen, Adv. Funct. Mater., 11, 15 (2001); doi:10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A.
M.T. Bernius, M. Inbasekaran, J. O’Brien and W. Wu, Adv. Mater., 12, 1737 (2000); doi:10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N.
Y.Z. Wang, R.G. Sun, D.K. Wang, T.M. Swager and A. Epstein, Appl. Phys. Lett., 74, 2593 (1999); doi:10.1063/1.123952.
J. Rostalski and D. Meissner, Sol. Energy Mater. Sol. Cells, 61, 87 (2000); doi:10.1016/S0927-0248(99)00099-9.
M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth and D. Meissner, Sol. Energy Mater. Sol. Cells, 61, 97 (2000); doi:10.1016/S0927-0248(99)00100-2.
K. Takahashi, N. Kuraya, T. Yamaguchi, T. Komura and K. Murata, Sol. Energy Mater. Sol. Cells, 61, 403 (2000); doi:10.1016/S0927-0248(99)00163-4.
M. Pfeiffer, A. Beyer, B. Plönnigs, A. Nollau, T. Fritzz, K. Leo, D. Schlettwein, S. Hiller and D. Wöhrle, Sol. Energy Mater. Sol. Cells, 63, 83 (2000); doi:10.1016/S0927-0248(00)00022-2.
M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agranovich and K. Leo, in eds.: F. Kajzar and V. Agranovich, Multiphoton and Light Driven Multielectron Processes: Materials, Phenomena, Applications, NATO Advanced Research Workshop, Kluwer Dordrecht, The Netherlands, p. 123 (2000).
R.H. Friend, M. Granström, K. Petritsch, A.C. Arias, A. Lux and M.R. Andersson, Nature, 395, 257 (1998); doi:10.1038/26183.
C.C. Leznoff, Phthalocyanines, Properties and Applications, VCH, New York (1989).
M. Hiramoto, H. Fujiwara and M. Yokoyama, Appl. Phys. Lett., 58, 1062 (1991); doi:10.1063/1.104423.
M. Hiramoto, H. Fukusumi and M. Yokoyama, Appl. Phys. Lett., 61, 2580 (1992); doi:10.1063/1.108133.
H. Tröster, Dyes Pigments, 4, 171 (1983); doi:10.1016/0143-7208(83)80015-1.
M.J. Fuller and M.R. Wasielewski, J. Phys. Chem. B, 105, 7216 (2001); doi:10.1021/jp011561v.
I. Yildiz-Oren, I. Yalcin, E. Aki-Sener and N. Ucarturk, Eur. J. Med. Chem., 39, 291 (2004); doi:10.1016/j.ejmech.2003.11.014.
H. Gilman, R. Adams, H.T. Clarke, J.B. Conant, C.S. Marvel, C.R. Noller and F.C. Whitmore, Organic Synthesis Collective, John Wiley & Sons, Inc, New York, edn 2, vol. 1, pp. 237–238 (1941).
H.M. Koepp, H. Wendt and H. Strehlow, Z. Elektrochem., 64, 483 (1960); doi:10.1002/bbpc.19600640406.
J.L. Bredas, R. Silbey, D.S. Boudreaux and R.R. Chance, J. Am. Chem. Soc., 105, 6555 (1983); doi:10.1021/ja00360a004.
D. Uzun, M.E. Ozser, K. Yuney, H. Icil and M. Demuth, J. Photochem. Photobiol. Chem., 156, 45 (2003); doi:10.1016/S1010-6030(02)00436-7.
S. Alp, Ş. Erten, C. Karapire, B. Köz, A.O. Doroshenko and S. Icli, J. Photochem. Photobiol. Chem., 135, 103 (2000); doi:10.1016/S1010-6030(00)00306-3.