Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Insights into Interactions of Human Islet Amyloid Polypeptide with Lipid Membranes using Atomic Force Microscopy and Fluorescence Microscopy
Corresponding Author(s) : M.S. Santosh
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
Type 2 diabetes mellitus (T2DM) is a global disease, in which the human amylin protein aggregates to form human islet amylin polypeptide (hIAPP) non-fibrils that are cytotoxic to pancreatic b-cells. The transformational change in hIAPP is accompanied by amorphous amyloid deposits on planar lipid membranes where in ordered and disordered membranes differ in the process of oligomerization, which is consistent with pathological findings in diabetic subjects. Such a transformational change results in the formation of non-fibrils, which are cytotoxic. In this study, with the use of atomic force microscopy (AFM) and fluorescence microscope (FM), we investigate the surface interactions and sequential conversion of hIAPP from small oligomers to mature hIAPP non-fibrils. It is observed that prolonged incubation under 25 °C, prohibits the fibrillar extension and permits formation of non-fibrillar peptide aggregates. These atomic force microscopy and fluorescence microscope techniques help in differentiating the oligomer formation better in real time and indicates how oligomer finally leads to changes in membrane morphology. Hence, this combined (AFM and FM) approach offers new molecular insights into the etiology of diabetes that could be extended to investigate amylin aggregation, oligomerization and amyloid non-fibril formation in vivo at a subcellular resolution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Nedumpully-Govindan and F. Ding, Sci. Rep., 5, 8240 (2015); doi:10.1038/srep08240.
- M.F. Engel, Chem. Phys. Lipids, 160, 1 (2009); doi:10.1016/j.chemphyslip.2009.03.008.
- D. Radovan, N. Opitz and R. Winter, FEBS Lett., 583, 1439 (2009); doi:10.1016/j.febslet.2009.03.059.
- A. Clark, C.E. Lewis, A.C. Willis, G.J.S. Cooper, J.F. Morris, K.B.M. Reid and R.C. Turner, Lancet, 330, 231 (1987); doi:10.1016/S0140-6736(87)90825-7.
- P. Westermark, U. Engstrom, K.H. Johnson, G.T. Westermark and C. Betsholtz, Proc. Natl. Acad. Sci. USA, 87, 5036 (1990); doi:10.1073/pnas.87.13.5036.
- E.J.P. de Koning, E.R. Morris, F.M.A. Hofhuis, G. Posthuma, J.W.M. Hoppener, J.F. Morris, P.J.A. Capel, A. Clark and J.S. Verbeek, Proc. Natl. Acad. Sci. USA, 91, 8467 (1994); doi:10.1073/pnas.91.18.8467.
- E.T. Jaikaran and A. Clark, Biochim. Biophys. Acta, 1537, 179 (2001); doi:10.1016/S0925-4439(01)00078-3.
- M. Anguiano, R.J. Nowak and P.T. Lansbury, Biochemistry, 41, 11338 (2002); doi:10.1021/bi020314u.
- Y. Porat, S. Kolusheva, R. Jelinek and E. Gazit, Biochemistry, 42, 10971 (2003); doi:10.1021/bi034889i.
- J.D. Green, C. Goldsbury, J. Kistler, G.J. Cooper and U. Aebi, J. Biol. Chem., 279, 12206 (2004); doi:10.1074/jbc.M312452200.
- J.D. Knight, J.A. Hebda and A.D. Miranker, Biochemistry, 45, 9496 (2006); doi:10.1021/bi060579z.
- N. Arispe, E. Rojas and H.B. Pollard, Proc. Natl. Acad. Sci. USA, 90, 567 (1993); doi:10.1073/pnas.90.2.567.
- T.A. Mirzabekov, M.C. Lin and B.L. Kagan, J. Biol. Chem., 271, 1988 (1996); doi:10.1074/jbc.271.4.1988.
- M. Kawahara, Y. Kuroda, N. Arispe and E. Rojas, J. Biol. Chem., 275, 14077 (2000); doi:10.1074/jbc.275.19.14077.
- J.I. Kourie, A.L. Culverson, P.V. Farrelly, C.L. Henry and K.N. Laohachai, Cell Biochem. Biophys., 36, 191 (2002); doi:10.1385/CBB:36:2-3:191.
- B.L. Kagan, R. Azimov and R. Azimova, J. Membr. Biol., 202, 1 (2004); doi:10.1007/s00232-004-0709-4.
- W.-J. Cho, B.P. Jena and A.M. Jeremic, Methods Cell Biol., 90, 267 (2008); doi:10.1016/S0091-679X(08)00813-3.
- Y. Yu, J.A. Vroman, S.C. Bae and S. Granick, J. Am. Chem. Soc., 132, 195 (2010); doi:10.1021/ja9059014.
- R.P. Richter and A. Brisson, Langmuir, 19, 1632 (2003); doi:10.1021/la026427w.
- K.J. Seu, A.P. Pandey, F. Haque, E.A. Proctor, A.E. Ribbe and J.S. Hovis, Biophys. J., 92, 2445 (2007); doi:10.1529/biophysj.106.099721.
- M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur and Y.F. Dufrene, Nat. Protoc., 3, 1654 (2008); doi:10.1038/nprot.2008.149.
- A. Choucair, M. Chakrapani, B. Chakravarthy, J. Katsaras and L.J. Johnston, Biochim. Biophys. Acta, 1768, 146 (2007); doi:10.1016/j.bbamem.2006.09.005.
- V.L. Sedman, S. Allen, W.C. Chan, M.C. Davies, C.J. Roberts, S.J. Tendler and P.M. Williams, Protein Pept. Lett., 12, 79 (2005); doi:10.2174/0929866053406129.
- H. Himeno, N. Shimokawa, S. Komura, D. Andelman, T. Hamada and M. Takagi, Soft Matter, 10, 7959 (2014); doi:10.1039/C4SM01089B.
- E. Sparr, M.F.M. Engel, D.V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijff, J.W.M. Höppener and J. Antoinette Killian, FEBS Lett., 577, 117 (2004); doi:10.1016/j.febslet.2004.09.075.
- N.B. Leite, A. Aufderhorst-Roberts, M.S. Palma, S.D. Connell, J.R. Neto and P.A. Beales, Biophys. J., 109, 936 (2015); doi:10.1016/j.bpj.2015.07.033.
- K. Weise, D. Radovan, A. Gohlke, N. Opitz and R. Winter, ChemBioChem, 11, 1280 (2010); doi:10.1002/cbic.201000039.
- P.E. Fraser, J.T. Nguyen, H. Inouye, W.K. Surewicz, D.J. Selkoe, M.B. Podlisny and D.A. Kirschner, Biochemistry, 31, 10716 (1992); doi:10.1021/bi00159a011.
- Y. Cao, D. Hamada, Y. Kong, P. Cao, J. Guo and J. Chen, in ed.: A. Mendez-Vilas, Current Microscopy Contributions to Advances in Science and Technology, Microscopy Book Series No. 5, pp. 668-677 (2012).
- H. Lin, R. Bhatia and R. Lal, FASEB J., 15, 2433 (2001); doi:10.1096/fj.01-0377com.
- A. Parbhu, H. Lin, J. Thimm and R. Lal, Peptides, 23, 1265 (2002); doi:10.1016/S0196-9781(02)00061-X.
- P.-E. Milhiet, M.-C. Giocondi, O. Baghdadi, F. Ronzon, C. Le Grimellec and B. Roux, Single Mol., 3, 135 (2002); doi:10.1002/1438-5171(200206)3:2/3<135::AID-SIMO135>3.0.CO;2-O.
References
P. Nedumpully-Govindan and F. Ding, Sci. Rep., 5, 8240 (2015); doi:10.1038/srep08240.
M.F. Engel, Chem. Phys. Lipids, 160, 1 (2009); doi:10.1016/j.chemphyslip.2009.03.008.
D. Radovan, N. Opitz and R. Winter, FEBS Lett., 583, 1439 (2009); doi:10.1016/j.febslet.2009.03.059.
A. Clark, C.E. Lewis, A.C. Willis, G.J.S. Cooper, J.F. Morris, K.B.M. Reid and R.C. Turner, Lancet, 330, 231 (1987); doi:10.1016/S0140-6736(87)90825-7.
P. Westermark, U. Engstrom, K.H. Johnson, G.T. Westermark and C. Betsholtz, Proc. Natl. Acad. Sci. USA, 87, 5036 (1990); doi:10.1073/pnas.87.13.5036.
E.J.P. de Koning, E.R. Morris, F.M.A. Hofhuis, G. Posthuma, J.W.M. Hoppener, J.F. Morris, P.J.A. Capel, A. Clark and J.S. Verbeek, Proc. Natl. Acad. Sci. USA, 91, 8467 (1994); doi:10.1073/pnas.91.18.8467.
E.T. Jaikaran and A. Clark, Biochim. Biophys. Acta, 1537, 179 (2001); doi:10.1016/S0925-4439(01)00078-3.
M. Anguiano, R.J. Nowak and P.T. Lansbury, Biochemistry, 41, 11338 (2002); doi:10.1021/bi020314u.
Y. Porat, S. Kolusheva, R. Jelinek and E. Gazit, Biochemistry, 42, 10971 (2003); doi:10.1021/bi034889i.
J.D. Green, C. Goldsbury, J. Kistler, G.J. Cooper and U. Aebi, J. Biol. Chem., 279, 12206 (2004); doi:10.1074/jbc.M312452200.
J.D. Knight, J.A. Hebda and A.D. Miranker, Biochemistry, 45, 9496 (2006); doi:10.1021/bi060579z.
N. Arispe, E. Rojas and H.B. Pollard, Proc. Natl. Acad. Sci. USA, 90, 567 (1993); doi:10.1073/pnas.90.2.567.
T.A. Mirzabekov, M.C. Lin and B.L. Kagan, J. Biol. Chem., 271, 1988 (1996); doi:10.1074/jbc.271.4.1988.
M. Kawahara, Y. Kuroda, N. Arispe and E. Rojas, J. Biol. Chem., 275, 14077 (2000); doi:10.1074/jbc.275.19.14077.
J.I. Kourie, A.L. Culverson, P.V. Farrelly, C.L. Henry and K.N. Laohachai, Cell Biochem. Biophys., 36, 191 (2002); doi:10.1385/CBB:36:2-3:191.
B.L. Kagan, R. Azimov and R. Azimova, J. Membr. Biol., 202, 1 (2004); doi:10.1007/s00232-004-0709-4.
W.-J. Cho, B.P. Jena and A.M. Jeremic, Methods Cell Biol., 90, 267 (2008); doi:10.1016/S0091-679X(08)00813-3.
Y. Yu, J.A. Vroman, S.C. Bae and S. Granick, J. Am. Chem. Soc., 132, 195 (2010); doi:10.1021/ja9059014.
R.P. Richter and A. Brisson, Langmuir, 19, 1632 (2003); doi:10.1021/la026427w.
K.J. Seu, A.P. Pandey, F. Haque, E.A. Proctor, A.E. Ribbe and J.S. Hovis, Biophys. J., 92, 2445 (2007); doi:10.1529/biophysj.106.099721.
M.P. Mingeot-Leclercq, M. Deleu, R. Brasseur and Y.F. Dufrene, Nat. Protoc., 3, 1654 (2008); doi:10.1038/nprot.2008.149.
A. Choucair, M. Chakrapani, B. Chakravarthy, J. Katsaras and L.J. Johnston, Biochim. Biophys. Acta, 1768, 146 (2007); doi:10.1016/j.bbamem.2006.09.005.
V.L. Sedman, S. Allen, W.C. Chan, M.C. Davies, C.J. Roberts, S.J. Tendler and P.M. Williams, Protein Pept. Lett., 12, 79 (2005); doi:10.2174/0929866053406129.
H. Himeno, N. Shimokawa, S. Komura, D. Andelman, T. Hamada and M. Takagi, Soft Matter, 10, 7959 (2014); doi:10.1039/C4SM01089B.
E. Sparr, M.F.M. Engel, D.V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijff, J.W.M. Höppener and J. Antoinette Killian, FEBS Lett., 577, 117 (2004); doi:10.1016/j.febslet.2004.09.075.
N.B. Leite, A. Aufderhorst-Roberts, M.S. Palma, S.D. Connell, J.R. Neto and P.A. Beales, Biophys. J., 109, 936 (2015); doi:10.1016/j.bpj.2015.07.033.
K. Weise, D. Radovan, A. Gohlke, N. Opitz and R. Winter, ChemBioChem, 11, 1280 (2010); doi:10.1002/cbic.201000039.
P.E. Fraser, J.T. Nguyen, H. Inouye, W.K. Surewicz, D.J. Selkoe, M.B. Podlisny and D.A. Kirschner, Biochemistry, 31, 10716 (1992); doi:10.1021/bi00159a011.
Y. Cao, D. Hamada, Y. Kong, P. Cao, J. Guo and J. Chen, in ed.: A. Mendez-Vilas, Current Microscopy Contributions to Advances in Science and Technology, Microscopy Book Series No. 5, pp. 668-677 (2012).
H. Lin, R. Bhatia and R. Lal, FASEB J., 15, 2433 (2001); doi:10.1096/fj.01-0377com.
A. Parbhu, H. Lin, J. Thimm and R. Lal, Peptides, 23, 1265 (2002); doi:10.1016/S0196-9781(02)00061-X.
P.-E. Milhiet, M.-C. Giocondi, O. Baghdadi, F. Ronzon, C. Le Grimellec and B. Roux, Single Mol., 3, 135 (2002); doi:10.1002/1438-5171(200206)3:2/3<135::AID-SIMO135>3.0.CO;2-O.