Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic Study of Acidic Hydrolysis of Di-2,3-dichloroaniline Phosphate
Corresponding Author(s) : S.A. Bhoite
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
Phosphate esters are vital to any living organisms and their hydrolysis plays an important role in many biological processes. In present study acid catalyzed hydrolysis of di-2,3-dichloroaniline phosphate has been carried out in 0.5-7.0 mol dm-3 HCl at 80 °C in 30 % (v/v) dioxane-water medium. The pseudo first order rate constants have been determined. The rate of hydrolysis increases with increase in acid molarity up to 4 mol dm-3 HCl and after that it decreases. The decrease in rate has been attributed to the effect of water activity. The effect of various parameters such as solvent, substrate concentration and ionic strength on the rate of hydrolysis has been studied to find out the bond fission, molecularity and order of reaction. Bimolecularity of the reaction has been discussed in terms of concepts such as Arrhenius parameters, Zücker-Hammett hypothesis, Bünnett and Bünnett-Olsen’s parameters. Kinetic rate data and isokinetic relationship has been employed to suggest bond-fission of the reaction. The probable reaction mechanism via conjugate acid species has been proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.W. Cleland and A.C. Hengge, Chem. Rev., 106, 3252 (2006); doi:10.1021/cr050287o.
- A.C. Hengge, in ed.: J.P. Richard, Advances in Physical Organic Chemistry, Academic: New York, pp. 40-49 (2005).
- J.K. Lassila, J.G. Zalatan and D. Herschlag, Annu. Rev. Biochem., 80, 669 (2011); doi:10.1146/annurev-biochem-060409-092741.
- J.R. Mora, A.J. Kirby and F. Nome, J. Org. Chem., 77, 7061 (2012); doi:10.1021/jo301380v.
- A. Mucha, P. Kafarski and L. Berlicki, J. Med. Chem., 54, 5955 (2011); doi:10.1021/jm200587f.
- M. Serpi, R. Bibbo, S. Rat, H. Roberts, C. Hughes, B. Caterson, M.J. Alcaraz, A.T. Gibert, C.R.A. Verson and C. McGuigan, J. Med. Chem., 55, 4629 (2012); doi:10.1021/jm300074y.
- A.K. Kanduluru and S.R. Cirandur, Phosphorus Sulfur Silicon Rel. Elem., 191, 719 (2016); doi:10.1080/10426507.2015.1072190.
- S.J. Hecker and M.D. Erion, J. Med. Chem., 51, 2328 (2008); doi:10.1021/jm701260b.
- J. Andresen and K. Bester, Water Res., 40, 621 (2006); doi:10.1016/j.watres.2005.11.022.
- S.C.L. Kamerlin and J. Wilkie, Org. Biomol. Chem., 5, 2098 (2007); doi:10.1039/b701274h.
- P. Gomez-Tagle and A.K. Yatsimirsky, J. Chem. Soc., Dalton Trans., 2663 (2001); doi:10.1039/b103163p.
- P. Rudert, J. Chem. Soc. (A), 323 (1893).
- R.J.L. Allen, Biochem. J., 34, 858 (1940); doi:10.1042/bj0340858.
- J.E. Lafler and E. Grunwald, The Rate and Equilibria of Organic Reaction, Wiley, New York, p. 286 (1963).
- J.F. Bunnett, J. Am. Chem. Soc., 83, 4978 (1961); doi:10.1021/ja01485a022.
- P.W.C. Branard, C.A. Bunton, D. Kellemann, M.M. Mhala, C.A. Vernon and V.A. Welch, J. Chem. Soc. B, 227 (1966); doi:10.1039/J29660000227.
- S. Arrhenius, Z. Phys. Chem., 4, 226 (1889).
- L.P. Hammett, Physical Organic Chemistry, McGraw Hill: London, p. 335 (1940).
- L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2791 (1939); doi:10.1021/ja01265a067.
- J.F. Bunnett and F.F. Olsen, Can. J. Chem., 44, 1917 (1966); doi:10.1139/v66-287.
- J.D. Chanley and E.J. Feageson, J. Am. Chem. Soc., 80, 2686 (1958); doi:10.1021/ja01544a025.
References
W.W. Cleland and A.C. Hengge, Chem. Rev., 106, 3252 (2006); doi:10.1021/cr050287o.
A.C. Hengge, in ed.: J.P. Richard, Advances in Physical Organic Chemistry, Academic: New York, pp. 40-49 (2005).
J.K. Lassila, J.G. Zalatan and D. Herschlag, Annu. Rev. Biochem., 80, 669 (2011); doi:10.1146/annurev-biochem-060409-092741.
J.R. Mora, A.J. Kirby and F. Nome, J. Org. Chem., 77, 7061 (2012); doi:10.1021/jo301380v.
A. Mucha, P. Kafarski and L. Berlicki, J. Med. Chem., 54, 5955 (2011); doi:10.1021/jm200587f.
M. Serpi, R. Bibbo, S. Rat, H. Roberts, C. Hughes, B. Caterson, M.J. Alcaraz, A.T. Gibert, C.R.A. Verson and C. McGuigan, J. Med. Chem., 55, 4629 (2012); doi:10.1021/jm300074y.
A.K. Kanduluru and S.R. Cirandur, Phosphorus Sulfur Silicon Rel. Elem., 191, 719 (2016); doi:10.1080/10426507.2015.1072190.
S.J. Hecker and M.D. Erion, J. Med. Chem., 51, 2328 (2008); doi:10.1021/jm701260b.
J. Andresen and K. Bester, Water Res., 40, 621 (2006); doi:10.1016/j.watres.2005.11.022.
S.C.L. Kamerlin and J. Wilkie, Org. Biomol. Chem., 5, 2098 (2007); doi:10.1039/b701274h.
P. Gomez-Tagle and A.K. Yatsimirsky, J. Chem. Soc., Dalton Trans., 2663 (2001); doi:10.1039/b103163p.
P. Rudert, J. Chem. Soc. (A), 323 (1893).
R.J.L. Allen, Biochem. J., 34, 858 (1940); doi:10.1042/bj0340858.
J.E. Lafler and E. Grunwald, The Rate and Equilibria of Organic Reaction, Wiley, New York, p. 286 (1963).
J.F. Bunnett, J. Am. Chem. Soc., 83, 4978 (1961); doi:10.1021/ja01485a022.
P.W.C. Branard, C.A. Bunton, D. Kellemann, M.M. Mhala, C.A. Vernon and V.A. Welch, J. Chem. Soc. B, 227 (1966); doi:10.1039/J29660000227.
S. Arrhenius, Z. Phys. Chem., 4, 226 (1889).
L.P. Hammett, Physical Organic Chemistry, McGraw Hill: London, p. 335 (1940).
L. Zucker and L.P. Hammett, J. Am. Chem. Soc., 61, 2791 (1939); doi:10.1021/ja01265a067.
J.F. Bunnett and F.F. Olsen, Can. J. Chem., 44, 1917 (1966); doi:10.1139/v66-287.
J.D. Chanley and E.J. Feageson, J. Am. Chem. Soc., 80, 2686 (1958); doi:10.1021/ja01544a025.