Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Durability Properties of High Volume Mineral Admixture Cement Composite
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
Cement is used to make cement composite, produces a large amount of CO2 (870 kg/ton) during manufacturing. Hence, an approach to effectively reduce CO2 emissions in the concrete industry is to reduce the amount of cement by increasing the amount of a mineral admixture such as blast furnace slag powder or fly ash. Here, we optimized the high volume mineral admixture binder composition by investigating the strength properties of a cement mortar made using binders with various admixtures and inorganic stimulus agents. We used a cement composite mix with a water/binder ratio of 26 % or 46 % to evaluate the compressive strength and durability of the cement composite with increasing amounts of admixture. The cement composite mixture with an inorganic stimulus agent showed outstanding chloride penetration resistance over all curing times and a durability factor of 90 % or more to freezing and thawing. A higher carbonation resistance was found when increasing the curing time for the high volume mineral admixture compositions with an inorganic stimulus agent added due to faster curing, resulting in a dense inner concrete structure. Consequently, when using an inorganic stimulus agent with a sufficiently long curing period, high volumes of the admixture can be used to produce concrete with suitable properties for various applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.S. Lee, Lafarge Holcim Community Special Report, 34, 6 (2015).
- J.W. Cho, Magazine Korea Concrete Institute, 23, 32 (2011).
- S.H. Lee, Magazine Korea Concrete Institute, 25, 12 (2013).
- Y.M. Piao, G.J. Mun and Y.S. Soh, J. Architectural Institute of Korea: Structure & Construction, 17, 143 (2001).
- Y.S. Soh, W.G. Hyoung, G.J. Mun and Y.M. Piao, J. Architectural Institute of Korea: Structure & Construction, 18, 65 (2002).
- R. Demirboga, I. Türkmen and M.B. Karakoç, Cement Concr. Res., 34, 2329 (2004); doi:10.1016/j.cemconres.2004.04.017.
- B.W. Jo, M.S. Park and S.K. Park, J. Korea Concr. Institute, 18, 449 (2006); doi:10.4334/JKCI.2006.18.4.449.
- G.-D. Moon, J.-H. Kim, Y.-K. Cho and Y.-C. Choi, J. Korea Recycled Construction Resources Institute, 2, 239 (2014); doi:10.14190/JRCR.2014.2.3.239.
- C.B. Park, D.H. Ryu and C.H. Sae, J. Architectural Institute of Korea: Structure & Construction, 28, 75 (2012).
- S.W. Choi, D.H. Ryu, H.S. Kim and G.Y. Kim, J. Korea Institute of Building and Construction, 13, 218 (2013); doi:10.5345/JKIBC.2013.13.3.218.
- H.-K. Nam, J.-G. Lim and S.-S. Lee, J. Korea Institute of Building and Construction, 15, 553 (2015); doi:10.5345/JKIBC.2015.15.6.553.
- M.H. Kim and S.S. Lee, J.Korea Concrete Institute, 11, 41 (1999).
- Nordtest Finland NT-BUILD 492: Concrete, Mortar and Cement-Based Repair Materials, Chloride Migration Coefficient From Non-Steady-State Migration Experiments (1999)..
- Y.H. Kim and H. Song, J. Korea Digital Architecture and Interior Association, 11, 21 (2011).
- T. Maruya, Construction of the Analysis Method on the Movement of the Chloride Ions in Concrete, Research Report, The University of Tokyo, Japan, pp. 41–45 (1995).
- V.G. Papadakis, C.G. Vayenas and M.N. Fardis, J. ACI Material, 186 (1991).
References
H.S. Lee, Lafarge Holcim Community Special Report, 34, 6 (2015).
J.W. Cho, Magazine Korea Concrete Institute, 23, 32 (2011).
S.H. Lee, Magazine Korea Concrete Institute, 25, 12 (2013).
Y.M. Piao, G.J. Mun and Y.S. Soh, J. Architectural Institute of Korea: Structure & Construction, 17, 143 (2001).
Y.S. Soh, W.G. Hyoung, G.J. Mun and Y.M. Piao, J. Architectural Institute of Korea: Structure & Construction, 18, 65 (2002).
R. Demirboga, I. Türkmen and M.B. Karakoç, Cement Concr. Res., 34, 2329 (2004); doi:10.1016/j.cemconres.2004.04.017.
B.W. Jo, M.S. Park and S.K. Park, J. Korea Concr. Institute, 18, 449 (2006); doi:10.4334/JKCI.2006.18.4.449.
G.-D. Moon, J.-H. Kim, Y.-K. Cho and Y.-C. Choi, J. Korea Recycled Construction Resources Institute, 2, 239 (2014); doi:10.14190/JRCR.2014.2.3.239.
C.B. Park, D.H. Ryu and C.H. Sae, J. Architectural Institute of Korea: Structure & Construction, 28, 75 (2012).
S.W. Choi, D.H. Ryu, H.S. Kim and G.Y. Kim, J. Korea Institute of Building and Construction, 13, 218 (2013); doi:10.5345/JKIBC.2013.13.3.218.
H.-K. Nam, J.-G. Lim and S.-S. Lee, J. Korea Institute of Building and Construction, 15, 553 (2015); doi:10.5345/JKIBC.2015.15.6.553.
M.H. Kim and S.S. Lee, J.Korea Concrete Institute, 11, 41 (1999).
Nordtest Finland NT-BUILD 492: Concrete, Mortar and Cement-Based Repair Materials, Chloride Migration Coefficient From Non-Steady-State Migration Experiments (1999)..
Y.H. Kim and H. Song, J. Korea Digital Architecture and Interior Association, 11, 21 (2011).
T. Maruya, Construction of the Analysis Method on the Movement of the Chloride Ions in Concrete, Research Report, The University of Tokyo, Japan, pp. 41–45 (1995).
V.G. Papadakis, C.G. Vayenas and M.N. Fardis, J. ACI Material, 186 (1991).