Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dichromate and Phosphate Sorption Capacity of Bis Formyl Calix[4]arene on Superparamagnetic Iron Oxide Nanoparticles in Aqueous Phase
Corresponding Author(s) : A. Aygun
Asian Journal of Chemistry,
Vol. 28 No. 12 (2016): Vol 28 Issue 12
Abstract
Calix[4]arene derivatives were added into aqueous phase phosphate and dichromate solutions in order to investigate sorption capacity at pH of 1.5 to 5.5. A 25 mg of polymers magnetic calix[4]arenes derivatives was added into the flask shaking at 180 rpm for 1 h at room temperature. pH controls ionic forms of phosphate and dichromate, resulting in their binding capacity to the polymers. Maximum sorption capacity was 96.6 % at pH 2.5 for phosphate and 90.1 % for chromium at pH 3.5. Different polymers may be selective for ions due to their versatility and special characteristics. As a result, magnetic nanoparticle polymers showed both super-paramagnetic behaviour and high sorption capability across dichromate and phosphate ions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Iwamoto and S.J. Shinkai, J. Org. Chem., 57, 7066 (1992); doi:10.1021/jo00052a016.
- B.S. Creaven, D.F. Donlon and J. McGinley, Coord. Chem. Rev., 253, 893 (2009); doi:10.1016/j.ccr.2008.06.008.
- V. Bohmer, Angew. Chem. Int. Ed. Engl., 34, 713 (1995); doi:10.1002/anie.199507131.
- I. Leray and B. Valeur, Eur. J. Inorg. Chem., 3525 (2009); doi:10.1002/ejic.200900386.
- M. Durmaz, S. Bozkurt, H.N. Naziroglu, M. Yilmaz and A. Sirit, Tetrahedron Asym., 22, 791 (2011); doi:10.1016/j.tetasy.2011.04.019.
- S. Bozkurt, E. Kocabas, M. Durmaz, M. Yilmaz and A. Sirit, J. Hazard. Mater., 165, 974 (2009); doi:10.1016/j.jhazmat.2008.10.096.
- M. Bayrakci, S. Ertul and M. Yilmaz, Tetrahedron, 65, 7963 (2009); doi:10.1016/j.tet.2009.07.062.
- D.M. Homden and C. Redshaw, Chem. Rev., 108, 5086 (2008); doi:10.1021/cr8002196.
- P. Molenveld, F.J. Engbersen and D.N. Reinhoudt, Chem. Soc. Rev., 29, 75 (2000); doi:10.1039/a804295k.
- S. Bozkurt, M. Durmaz, A. Sirit and M. Yilmaz, J. Macromol. Sci. A, 44, 159 (2007); doi:10.1080/10601320601030715.
- H. Luo, S. Dai, P.V. Bonnesen, A.C. Buchanan, J.D. Holbrey, N.J. Bridges and R.D. Rogers, Anal. Chem., 76, 3078 (2004); doi:10.1021/ac049949k.
- K.S.J. Iqbal and P.J. Cragg, Dalton Trans., 1, 26 (2007); doi:10.1039/B613867P.
- S. Ertul, M. Bayrakci and M. Yilmaz, J. Hazard. Mater., 181, 1059 (2010); doi:10.1016/j.jhazmat.2010.05.121.
- K. Mahadevaiah, M.S.Y. Kumar, M.S.A. Galil, M.S. Suresha, M.A. Sathish and G. Nagendrappa, E.-J. Chem., 4, 467 (2007); doi:10.1155/2007/576560.
- J. Yoon, S.K. Kim, N.J. Singh, J.W. Lee, Y.J. Yang, K. Chellappan and K.S. Kim, J. Org. Chem., 69, 581 (2004); doi:10.1021/jo035387d.
- D.M. Stearns, L.J. Kennedy, K.D. Courtney, P.H. Giangrande, L.S. Phieffer and K.E. Wetterhahn, Biochemistry, 34, 910 (1995); doi:10.1021/bi00003a025.
- T. Ertugrul, A. Berktay and B. Nas, Environ. Eng. Sci., 23, 1055 (2006); doi:10.1089/ees.2006.23.1055.
- M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S.G. Curtis and M. Muhammed, Chem. Mater., 16, 2344 (2004); doi:10.1021/cm0348904.
- C.E. Sjögren, C. Johansson, A. Naevestad, P.C. Sontum, K. Briley-Sæbø and A.K. Fahlvik, Magn. Reson. Imaging, 15, 55 (1997); doi:10.1016/S0730-725X(96)00335-9.
- F. Ozcan, M. Bayrakci and S. Ertul, J. Macromol. Sci. Pure Appl. Chem., 52, 559 (2015); doi:10.1080/10601325.2015.1050631.
References
K. Iwamoto and S.J. Shinkai, J. Org. Chem., 57, 7066 (1992); doi:10.1021/jo00052a016.
B.S. Creaven, D.F. Donlon and J. McGinley, Coord. Chem. Rev., 253, 893 (2009); doi:10.1016/j.ccr.2008.06.008.
V. Bohmer, Angew. Chem. Int. Ed. Engl., 34, 713 (1995); doi:10.1002/anie.199507131.
I. Leray and B. Valeur, Eur. J. Inorg. Chem., 3525 (2009); doi:10.1002/ejic.200900386.
M. Durmaz, S. Bozkurt, H.N. Naziroglu, M. Yilmaz and A. Sirit, Tetrahedron Asym., 22, 791 (2011); doi:10.1016/j.tetasy.2011.04.019.
S. Bozkurt, E. Kocabas, M. Durmaz, M. Yilmaz and A. Sirit, J. Hazard. Mater., 165, 974 (2009); doi:10.1016/j.jhazmat.2008.10.096.
M. Bayrakci, S. Ertul and M. Yilmaz, Tetrahedron, 65, 7963 (2009); doi:10.1016/j.tet.2009.07.062.
D.M. Homden and C. Redshaw, Chem. Rev., 108, 5086 (2008); doi:10.1021/cr8002196.
P. Molenveld, F.J. Engbersen and D.N. Reinhoudt, Chem. Soc. Rev., 29, 75 (2000); doi:10.1039/a804295k.
S. Bozkurt, M. Durmaz, A. Sirit and M. Yilmaz, J. Macromol. Sci. A, 44, 159 (2007); doi:10.1080/10601320601030715.
H. Luo, S. Dai, P.V. Bonnesen, A.C. Buchanan, J.D. Holbrey, N.J. Bridges and R.D. Rogers, Anal. Chem., 76, 3078 (2004); doi:10.1021/ac049949k.
K.S.J. Iqbal and P.J. Cragg, Dalton Trans., 1, 26 (2007); doi:10.1039/B613867P.
S. Ertul, M. Bayrakci and M. Yilmaz, J. Hazard. Mater., 181, 1059 (2010); doi:10.1016/j.jhazmat.2010.05.121.
K. Mahadevaiah, M.S.Y. Kumar, M.S.A. Galil, M.S. Suresha, M.A. Sathish and G. Nagendrappa, E.-J. Chem., 4, 467 (2007); doi:10.1155/2007/576560.
J. Yoon, S.K. Kim, N.J. Singh, J.W. Lee, Y.J. Yang, K. Chellappan and K.S. Kim, J. Org. Chem., 69, 581 (2004); doi:10.1021/jo035387d.
D.M. Stearns, L.J. Kennedy, K.D. Courtney, P.H. Giangrande, L.S. Phieffer and K.E. Wetterhahn, Biochemistry, 34, 910 (1995); doi:10.1021/bi00003a025.
T. Ertugrul, A. Berktay and B. Nas, Environ. Eng. Sci., 23, 1055 (2006); doi:10.1089/ees.2006.23.1055.
M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S.G. Curtis and M. Muhammed, Chem. Mater., 16, 2344 (2004); doi:10.1021/cm0348904.
C.E. Sjögren, C. Johansson, A. Naevestad, P.C. Sontum, K. Briley-Sæbø and A.K. Fahlvik, Magn. Reson. Imaging, 15, 55 (1997); doi:10.1016/S0730-725X(96)00335-9.
F. Ozcan, M. Bayrakci and S. Ertul, J. Macromol. Sci. Pure Appl. Chem., 52, 559 (2015); doi:10.1080/10601325.2015.1050631.