Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Hexavalent Chromium Using Novel Adsorbent Prepared from Wrightia tinctoria Fruits under Microwave Heating
Corresponding Author(s) : S. Saminathan
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
An activated carbon prepared from unripe fruits of Wrightia tinctoria by two-step microwave irradiation with optimum duration produces activated carbon with a surface area of 911 m2/g. The prepared activated carbon (WAC) utilized for the removal of hexavalent chromium from wastewater. Effect of pH indicates that maximum quantity of Cr(VI) can be removed at a pH of 2. The correlation coefficient calculated using pseudo-second order model varies between 0.9819 < r2 < 0.9968 at different initial concentrations and it varies between 0.9888 < r2 < 0.9938 at various temperatures depicts that pseudo-second order kinetic model is more appropriate to describe the adsorption than pseudo-first order model. The Freundlich model is more appropriate to explain the adsorption of Cr(VI) onto WAC when compared with Langmuir isotherm model with good correlation coefficient. The positive enthalpy of adsorption indicates the endothermic nature of adsorption with good spontaneity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.K. Gupta, D. Pathania, S. Sharma and P. Singh, J. Colloid Interf. Sci., 401, 125 (2013); doi:10.1016/j.jcis.2013.03.020.
- M. Costa, Toxicol. Appl. Pharmacol., 188, 1 (2003); doi:10.1016/S0041-008X(03)00011-5.
- L.V.A. Gurgel, J.C. Perin de Melo, J.C. de Lena and L.F. Gil, Bioresour. Technol., 100, 3214 (2009); doi:10.1016/j.biortech.2009.01.068.
- J. Fang, Z.M. Gu, D.C. Gang, C.X. Liu, E.S. Ilton and B.L. Deng, Environ. Sci. Technol., 41, 4748 (2007); doi:10.1021/es061969b.
- D. Mohan and C.U. Pittman Jr., J. Hazard. Mater., 137, 762 (2006); doi:10.1016/j.jhazmat.2006.06.060.
- M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao and I. Goktepe, Water Res., 38, 1062 (2004); doi:10.1016/j.watres.2003.10.047.
- T. Yang and A.C. Lua, J. Colloid Interf. Sci., 267, 408 (2003); doi:10.1016/S0021-9797(03)00689-1.
- T. Zhang, W.P. Walawender, L.T. Fan, M. Fan, D. Daugaard and R.C. Brown, Chem. Eng. J., 105, 53 (2004); doi:10.1016/j.cej.2004.06.011.
- U. Zielke, K.J. Huttinger and W.P. Hoffman, Carbon, 34, 983 (1996); doi:10.1016/0008-6223(96)00032-2.
- M.J. Ahmed and S.K. Theydan, Chem. Eng. J., 214, 310 (2013); doi:10.1016/j.cej.2012.10.101.
- ISI, Indian Standards Institute. IS-877 (1977).
- APHA, American Public Health Association, Washington, D.C (1980).
- A. Benhammou, A. Yaacoubi, L. Nibou and B. Tanouti, J. Hazard. Mater., 140, 104 (2007); doi:10.1016/j.jhazmat.2006.06.077.
- S. Lagergren, Kung. Sven. Veten. Hand., 24, 1 (1898).
- Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); doi:10.1016/S0032-9592(98)00112-5.
- U.K. Garg, M.P. Kaur, V.K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007); doi:10.1016/j.jhazmat.2006.06.056.
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
- H. Freundlich, Z. Phys. Chem., 57, 387 (1906).
- A. Ozcan, E.M. Oncu and A.S. Ozcan, Colloids Surf. A, 277, 90 (2006); doi:10.1016/j.colsurfa.2005.11.017.
- S. Arivoli, Ph.D., Thesis, Gandhigram Rural University, Gandhigram, India (2007).
References
V.K. Gupta, D. Pathania, S. Sharma and P. Singh, J. Colloid Interf. Sci., 401, 125 (2013); doi:10.1016/j.jcis.2013.03.020.
M. Costa, Toxicol. Appl. Pharmacol., 188, 1 (2003); doi:10.1016/S0041-008X(03)00011-5.
L.V.A. Gurgel, J.C. Perin de Melo, J.C. de Lena and L.F. Gil, Bioresour. Technol., 100, 3214 (2009); doi:10.1016/j.biortech.2009.01.068.
J. Fang, Z.M. Gu, D.C. Gang, C.X. Liu, E.S. Ilton and B.L. Deng, Environ. Sci. Technol., 41, 4748 (2007); doi:10.1021/es061969b.
D. Mohan and C.U. Pittman Jr., J. Hazard. Mater., 137, 762 (2006); doi:10.1016/j.jhazmat.2006.06.060.
M. Ahmedna, W.E. Marshall, A.A. Husseiny, R.M. Rao and I. Goktepe, Water Res., 38, 1062 (2004); doi:10.1016/j.watres.2003.10.047.
T. Yang and A.C. Lua, J. Colloid Interf. Sci., 267, 408 (2003); doi:10.1016/S0021-9797(03)00689-1.
T. Zhang, W.P. Walawender, L.T. Fan, M. Fan, D. Daugaard and R.C. Brown, Chem. Eng. J., 105, 53 (2004); doi:10.1016/j.cej.2004.06.011.
U. Zielke, K.J. Huttinger and W.P. Hoffman, Carbon, 34, 983 (1996); doi:10.1016/0008-6223(96)00032-2.
M.J. Ahmed and S.K. Theydan, Chem. Eng. J., 214, 310 (2013); doi:10.1016/j.cej.2012.10.101.
ISI, Indian Standards Institute. IS-877 (1977).
APHA, American Public Health Association, Washington, D.C (1980).
A. Benhammou, A. Yaacoubi, L. Nibou and B. Tanouti, J. Hazard. Mater., 140, 104 (2007); doi:10.1016/j.jhazmat.2006.06.077.
S. Lagergren, Kung. Sven. Veten. Hand., 24, 1 (1898).
Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); doi:10.1016/S0032-9592(98)00112-5.
U.K. Garg, M.P. Kaur, V.K. Garg and D. Sud, J. Hazard. Mater., 140, 60 (2007); doi:10.1016/j.jhazmat.2006.06.056.
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); doi:10.1021/ja02242a004.
H. Freundlich, Z. Phys. Chem., 57, 387 (1906).
A. Ozcan, E.M. Oncu and A.S. Ozcan, Colloids Surf. A, 277, 90 (2006); doi:10.1016/j.colsurfa.2005.11.017.
S. Arivoli, Ph.D., Thesis, Gandhigram Rural University, Gandhigram, India (2007).