Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication and Characterization of Ni–Mo Nanowires by Electrodeposition
Corresponding Author(s) : Rana Afif Anaee
Asian Journal of Chemistry,
Vol. 28 No. 11 (2016): Vol 28 Issue 11
Abstract
Ni–Mo nanowires have been fabricated by electrochemical deposition. Anodic aluminum oxide (AAO) was used as template to deposit nanowires. SEM and TEM were used to characterized the pores in prepared anodic aluminum oxide with 70 nm diameter of pores which calculated by J program. Nickel sulfate and sodium molybdate in boric acid were used as electrolyte to deposit 83.8Ni–16.2Mo nanowires. The nanowires were characterized by SEM and TEM after partially and completely dissolving of template to obtain nanowires with 70-72 nm in diameter and 420-500 nm in length. TEM of single Ni–Mo nanowire gave probability to form tetragonal structure of Ni4Mo phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.P. Zach, K.H. Ng and R.M. Penner, Science, 290, 2120 (2000); doi:10.1126/science.290.5499.2120.
- C. Yoon and J.S. Suh, Bull. Korean Chem. Soc., 23, 1519 (2002); doi:10.5012/bkcs.2002.23.11.1519.
- Y.-H. Cheng and S.-Y. Cheng, Nanotechnology, 15, 171 (2004); doi:10.1088/0957-4484/15/1/033.
- Y. Bisrat, Z.P. Luo, D. Davis and D. Lagoudas, Nanotechnology, 18, 395601 (2007); doi:10.1088/0957-4484/18/39/395601.
- E.D. Herderick, J.S. Tresback, A.L. Vasiliev and N.P. Padture, Nanotechnology, 18, 155204 (2007).
- I. Kazeminezhad and G. Nabiyouni, Afr. Phys. Rev., 2, 145 (2008).
- S. Shamaila, D.P. Liu, R. Sharif, J.Y. Chen, H.R. Liu and X.F. Han, Appl. Phys. Lett., 94, 203101 (2009); doi:10.1063/1.3139059.
- H.S. Virk, Digest J. Nanomater. Biostruct., 5, 593 (2010).
- N.U. Saidin, K.Y. Kok, I.K. Ng and S.H. Ilias, J. Phys. Conf. Ser., 431, 012006 (2013); doi:10.1088/1742-6596/431/1/012006.
- C. Gheorghies, D.E. Rusu, A.M. Cantaragiu, L. Gherghies and M. Buciumeanu, Romanian Reports in Physics, 67, 933 (2015).
References
M.P. Zach, K.H. Ng and R.M. Penner, Science, 290, 2120 (2000); doi:10.1126/science.290.5499.2120.
C. Yoon and J.S. Suh, Bull. Korean Chem. Soc., 23, 1519 (2002); doi:10.5012/bkcs.2002.23.11.1519.
Y.-H. Cheng and S.-Y. Cheng, Nanotechnology, 15, 171 (2004); doi:10.1088/0957-4484/15/1/033.
Y. Bisrat, Z.P. Luo, D. Davis and D. Lagoudas, Nanotechnology, 18, 395601 (2007); doi:10.1088/0957-4484/18/39/395601.
E.D. Herderick, J.S. Tresback, A.L. Vasiliev and N.P. Padture, Nanotechnology, 18, 155204 (2007).
I. Kazeminezhad and G. Nabiyouni, Afr. Phys. Rev., 2, 145 (2008).
S. Shamaila, D.P. Liu, R. Sharif, J.Y. Chen, H.R. Liu and X.F. Han, Appl. Phys. Lett., 94, 203101 (2009); doi:10.1063/1.3139059.
H.S. Virk, Digest J. Nanomater. Biostruct., 5, 593 (2010).
N.U. Saidin, K.Y. Kok, I.K. Ng and S.H. Ilias, J. Phys. Conf. Ser., 431, 012006 (2013); doi:10.1088/1742-6596/431/1/012006.
C. Gheorghies, D.E. Rusu, A.M. Cantaragiu, L. Gherghies and M. Buciumeanu, Romanian Reports in Physics, 67, 933 (2015).