Copyright (c) 2025 Ashlesha Wakchaure

This work is licensed under a Creative Commons Attribution 4.0 International License.
Eco-Engineered Copper Oxide Nanoparticles via Microwave-Assisted Extraction of Cyphostemma auriculatum (Roxb.): Synthesis, Characterization and Bioactivity Evaluation
Corresponding Author(s) : Ashlesha Arun Wakchaure
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
As nanotechnology continues to expand the therapeutic applications of metal oxide nanoparticles across diverse diseases, this study emphasized on the green synthesis of copper oxide nanoparticles (CuO NPs) using ethanolic extract of Cyphostemma auriculatum (Roxb.). This eco-friendly synthesis yielded CuO NPs with reduced particle size and enhanced stability while eliminating the use of hazardous chemicals. Employing the ethanolic extract of C. auriculatum (Roxb.), the study synthesized CuO NPs and subsequently evaluated their antimicrobial activity. The synthesized CuO NPs were characterized using UV-visible spectrophotometry, zeta potential analysis, FTIR spectroscopy, transmission electron microscopy (TEM), particle size analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD) to assess their structural, morphological and functional properties. UV-Vis spectroscopy displayed a distinct absorption peak at 532 nm, confirming the successful formation of CuO NPs. FTIR analysis identified phenolic compounds whose carbonyl and hydroxyl groups facilitated copper ion reduction and nanoparticle stabilization. The synthesized CuO NPs exhibited an average hydrodynamic size of 122 nm with a PDI of 0.389, indicating moderate dispersion. SEM revealed predominantly spherical particles, while TEM further showed a uniform size distribution within the 2-10 nm range, validating their nanoscale morphology. Moreover, the antimicrobial activity and in vitro and in vivo anti-inflammatory of the synthesized CuO NPs was further investigated. The results demonstrate that plant extracts can effectively tailor the properties of CuO NPs, thereby enhancing their functional performance. Among the tested extracts, the ethanolic extract of C. auriculatum (Roxb.) produced CuO nanoparticles with the highest antimicrobial activity. This green synthesis approach not only improves nanoparticle efficacy but also provides an eco-friendly and cost-effective route for nanoparticle production.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.F. Al-Hakkani, SN Appl. Sci., 2, 505 (2020); https://doi.org/10.1007/s42452-020-2279-1
- S.A. Akintelu, A.S. Folorunso, F.A. Folorunso and A.K. Oyebamiji, Heliyon, 6, e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508
- M. Thatyana, N.P. Dube, D. Kemboi, A.L.E. Manicum, N.S. Mokgalaka-Fleischmann and J.V. Tembu, Nanomaterials, 13, 2616 (2023); https://doi.org/10.3390/nano13192616
- R. Prakruthia and H.N. Deepakumari, RSC Adv., 14, 28703 (2024); https://doi.org/10.1039/D4RA04622F
- A. Jayadev and B.N. Krishnan, J. Sci. Res., 65, 80 (2021); https://doi.org/10.37398/JSR.2021.650111
- H. Gebrehiwot, A. Dekebo, K. Shenkute, U. Ensermu and M. Endale, Bull. Chem. Soc. Ethiop., 38, 167 (2023); https://doi.org/10.4314/bcse.v38i1.13
- K. Mendam and S.J.K. Naik, Mater. Today: Proc., 92, 618 (2023); https://doi.org/10.1016/j.matpr.2023.04.126
- A.A. Wakchaure, M.R. Kumbhare, G.B. Jadhav, S.R. Gawali and K.N. Mundlod, Res. J. Pharm. Technol., 18, 4047 (2025); https://doi.org/10.52711/0974-360X.2025.00581
- O.A. Olalere and C.Y. Gan, Sep. Sci. Technol., 56, 1853 (2021); https://doi.org/10.1080/01496395.2020.1795678
- M. Ramzan, R.M. Obodo, S. Mukhtar, S.Z. Ilyas, F. Aziz and N. Thovhogi, Mater. Today Proc., 36, 576 (2021); https://doi.org/10.1016/j.matpr.2020.05.472
- S.D. Bhinge, M.G. Hogade, A.S. Savali, H.R. Chitapurkar and C.S. Magdum, Indian Drugs, 50, 44 (2013); https://doi.org/10.53879/id.50.05.p0044
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- P. Siva Krishna, P. Srinivasa Babu and R. Karthikeyan, CIBTech J. Pharm. Sci., 6, 19 (2017).
- A. Chowdhury, S. Azam, M.A. Jainul, K.O. Faruq and A. Islam, Int. J. Microbiol., 2014, 410935 (2014); https://doi.org/10.1155/2014/410935
- C.A. Winter, E.A. Risley and G.W. Nuss, Exp. Biol. Med., 111, 544 (1962); https://doi.org/10.3181/00379727-111-27849
- P. Belle, E. Kedi, A.A. Ntoumba and B. Moll, Int. J. Green Herb. Chem., 9, (2020); https://doi.org/10.24214/IJGHC/HC/9/3/34560
- P. Belle, E. Kedi, F. Eya’ane Meva, L. Kotsedi, E.L. Nguemfo, C. Bogning Zangueu, A.A. Ntoumba, H. Mohamed, A.B. Dongmo and M. Maaza, Int. J. Nanomedicine, 13, 8537 (2018); https://doi.org/10.2147/IJN.S174530
- B. Sadeghi and F. Gholamhoseinpoor, Spectrochim. Acta A Mol. Biomol. Spectrosc., 134, 310 (2015); https://doi.org/10.1016/j.saa.2014.06.046
- E.A. Mohamed, Heliyon, 6, e03123 (2020); https://doi.org/10.1016/j.heliyon.2019.e03123
- K. Velsankar, R.M. Aswin Kumara, R. Preethi, V. Muthulakshmi and S. Sudhahar, J. Environ. Chem. Eng., 8, 104123 (2020); https://doi.org/10.1016/j.jece.2020.104123
- G. Madec, P. Delecluse, M. Imbard and C. Levy, OPA 8.1 Ocean General Circulation Model Reference Manual. Notes du Pôle Modélisation, Inst Pierre Simon Laplace (1998)
- Y.S. Hajizadeh, N. Harzandi, E. Babapour, M. Yazdanian and R. Ranjbar, Adv. Mater. Sci. Eng., 2022, 8100440 (2022); https://doi.org/10.1155/2022/8100440
- V.U. Siddiqui, A. Ansari, R. Chauhan and W.A. Siddiqi, Mater. Today Proc., 36, 751 (2021); https://doi.org/10.1016/j.matpr.2020.05.504
- M.T. Shaaban, M.F. Ghaly and S.M. Fahmi, J. Basic Microbiol., 61, 557 (2021); https://doi.org/10.1002/jobm.202100061
References
M.F. Al-Hakkani, SN Appl. Sci., 2, 505 (2020); https://doi.org/10.1007/s42452-020-2279-1
S.A. Akintelu, A.S. Folorunso, F.A. Folorunso and A.K. Oyebamiji, Heliyon, 6, e04508 (2020); https://doi.org/10.1016/j.heliyon.2020.e04508
M. Thatyana, N.P. Dube, D. Kemboi, A.L.E. Manicum, N.S. Mokgalaka-Fleischmann and J.V. Tembu, Nanomaterials, 13, 2616 (2023); https://doi.org/10.3390/nano13192616
R. Prakruthia and H.N. Deepakumari, RSC Adv., 14, 28703 (2024); https://doi.org/10.1039/D4RA04622F
A. Jayadev and B.N. Krishnan, J. Sci. Res., 65, 80 (2021); https://doi.org/10.37398/JSR.2021.650111
H. Gebrehiwot, A. Dekebo, K. Shenkute, U. Ensermu and M. Endale, Bull. Chem. Soc. Ethiop., 38, 167 (2023); https://doi.org/10.4314/bcse.v38i1.13
K. Mendam and S.J.K. Naik, Mater. Today: Proc., 92, 618 (2023); https://doi.org/10.1016/j.matpr.2023.04.126
A.A. Wakchaure, M.R. Kumbhare, G.B. Jadhav, S.R. Gawali and K.N. Mundlod, Res. J. Pharm. Technol., 18, 4047 (2025); https://doi.org/10.52711/0974-360X.2025.00581
O.A. Olalere and C.Y. Gan, Sep. Sci. Technol., 56, 1853 (2021); https://doi.org/10.1080/01496395.2020.1795678
M. Ramzan, R.M. Obodo, S. Mukhtar, S.Z. Ilyas, F. Aziz and N. Thovhogi, Mater. Today Proc., 36, 576 (2021); https://doi.org/10.1016/j.matpr.2020.05.472
S.D. Bhinge, M.G. Hogade, A.S. Savali, H.R. Chitapurkar and C.S. Magdum, Indian Drugs, 50, 44 (2013); https://doi.org/10.53879/id.50.05.p0044
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
P. Siva Krishna, P. Srinivasa Babu and R. Karthikeyan, CIBTech J. Pharm. Sci., 6, 19 (2017).
A. Chowdhury, S. Azam, M.A. Jainul, K.O. Faruq and A. Islam, Int. J. Microbiol., 2014, 410935 (2014); https://doi.org/10.1155/2014/410935
C.A. Winter, E.A. Risley and G.W. Nuss, Exp. Biol. Med., 111, 544 (1962); https://doi.org/10.3181/00379727-111-27849
P. Belle, E. Kedi, A.A. Ntoumba and B. Moll, Int. J. Green Herb. Chem., 9, (2020); https://doi.org/10.24214/IJGHC/HC/9/3/34560
P. Belle, E. Kedi, F. Eya’ane Meva, L. Kotsedi, E.L. Nguemfo, C. Bogning Zangueu, A.A. Ntoumba, H. Mohamed, A.B. Dongmo and M. Maaza, Int. J. Nanomedicine, 13, 8537 (2018); https://doi.org/10.2147/IJN.S174530
B. Sadeghi and F. Gholamhoseinpoor, Spectrochim. Acta A Mol. Biomol. Spectrosc., 134, 310 (2015); https://doi.org/10.1016/j.saa.2014.06.046
E.A. Mohamed, Heliyon, 6, e03123 (2020); https://doi.org/10.1016/j.heliyon.2019.e03123
K. Velsankar, R.M. Aswin Kumara, R. Preethi, V. Muthulakshmi and S. Sudhahar, J. Environ. Chem. Eng., 8, 104123 (2020); https://doi.org/10.1016/j.jece.2020.104123
G. Madec, P. Delecluse, M. Imbard and C. Levy, OPA 8.1 Ocean General Circulation Model Reference Manual. Notes du Pôle Modélisation, Inst Pierre Simon Laplace (1998)
Y.S. Hajizadeh, N. Harzandi, E. Babapour, M. Yazdanian and R. Ranjbar, Adv. Mater. Sci. Eng., 2022, 8100440 (2022); https://doi.org/10.1155/2022/8100440
V.U. Siddiqui, A. Ansari, R. Chauhan and W.A. Siddiqi, Mater. Today Proc., 36, 751 (2021); https://doi.org/10.1016/j.matpr.2020.05.504
M.T. Shaaban, M.F. Ghaly and S.M. Fahmi, J. Basic Microbiol., 61, 557 (2021); https://doi.org/10.1002/jobm.202100061