Copyright (c) 2025 Dr. Vijendra Singh Solanki Vijendra, Amlan Kumar Das, Sarita Khaturia, Neha Agarwal, Pramod Kumar, Renu Bishnoi, Divyanshi Sharma, Priyanka Choudhary

This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Magnetite Nanoparticles and Catalytic Activity on Hydrogen Production
Corresponding Author(s) : Vijendra Singh Solanki
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
In this study, magnetite (Fe3O4) nanoparticles were synthesized via a green route using Cucurbita pepo leaf extract as a bioreducing and capping agent and their catalytic efficacy in hydrogen production from aqueous formaldehyde under alkaline conditions was investigated. The biosynthesized Fe3O4 nanoparticles exhibited a strong UV-Vis absorption peak at 200-300 nm and characteristic Fe-O stretching vibrations in the FTIR spectrum, confirming successful nanoscale magnetite formation with biofunctional surface groups enhancing stability and catalytic activity. Hydrogen evolution experiments, performed through the downward displacement of water to ensure CO- and CO2-free collection, revealed a 350-folds increase in hydrogen production rate from formaldehyde compared to the non-catalyzed system at 60 ºC. The hydrogen generation rate was directly proportional to catalyst loading, with a threefold increase in Fe3O4 quantity (0.005 g → 0.015 g) resulting in a substantial enhancement of H2 yield (from 30 → 48 mL h–1). Mechanistic insights suggest a magnetite-facilitated Cannizzaro-type pathway, where formaldehyde and water each contribute a hydrogen atom to form molecular hydrogen, while sodium formate is generated as a recyclable byproduct. This green, low-temperature and CO-free hydrogen production process highlights the potential of biofunctionalized Fe3O4 nanoparticles as efficient and sustainable catalysts for on-demand hydrogen supply in proton exchange membrane fuel cells (PEMFCs) applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.B. Kim, T. Voitl, G.J. Rodriguez-Rivera and J.A. Dumesic, Science, 305, 1280 (2004); https://doi.org/10.1126/science.1100860
- M.M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria and V. Compañ, Polymers, 13, 3064 (2021); https://doi.org/10.3390/polym13183064
- T. Tabakova, V. Idakiev, K. Tenchev, F. Boccuzzi, M. Manzoli and A. Chiorino, Appl. Catal. B, 63, 94 (2006); https://doi.org/10.1016/j.apcatb.2005.09.017
- W. Zeng, B. Guan, Z. Zhuang, J. Chen, L. Zhu, Z. Ma, X. Hu, C. Zhu, S. Zhao, K. Shu, H. Dang, T. Zhu and Z. Huang, Int. J. Hydrogen Energy, 102, 222 (2025); https://doi.org/10.1016/j.ijhydene.2024.12.513
- X. Chen, S.L. Suib, Y. Hayashi and H. Matsumoto, J. Catal., 201, 198 (2001); https://doi.org/10.1006/jcat.2001.3252
- Y. Calzavara, C. Joussot-Dubien, G. Boissonnet and S. Sarrade, Energy Convers. Manage., 46, 615 (2005); https://doi.org/10.1016/j.enconman.2004.04.003
- T. Hanaoka, T. Yoshida, S. Fujimoto, K. Kamei, M. Harada, Y. Suzuki, H. Hatano, S. Yokoyama and T. Minowa, Biomass Bioenergy, 28, 63 (2005); https://doi.org/10.1016/j.biombioe.2004.03.009
- I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J.D. Grunwaldt and F. Schuth, Appl. Catal. A Gen., 302, 215 (2006); https://doi.org/10.1016/j.apcata.2006.01.014
- T. Tanabe, S. Kameoka and A.P. Tsai, Catal. Today, 111, 153 (2006); https://doi.org/10.1016/j.cattod.2005.11.003
- S. Liu, K. Takahashi, K. Fuchigami and K. Uematsu, Appl. Catal. A Gen., 299, 58 (2006); https://doi.org/10.1016/j.apcata.2005.10.012
- D. Cheng, X. Zhu, Y. Ben, F. He, L. Cui and C. Liu, Catal. Today, 115, 205 (2006); https://doi.org/10.1016/j.cattod.2006.02.063
- A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chem. Commun., 9, 851 (2001); https://doi.org/10.1039/b101455m
- S. Cavallaro and S. Freni, Int. J. Hydrogen Energy, 21, 465 (1996); https://doi.org/10.1016/0360-3199(95)00107-7
- F.J. Marino, E.G. Cerrella, S. Duhalde, M. Jobbagy and M. Laborde, Int. J. Hydrogen Energy, 23, 1095 (1998); https://doi.org/10.1016/S0360-3199(97)00173-0
- V.V. Galvita, G.L. Semin, V.D. Belyaev, V.A. Semikolenov, P. Tsiakaras and V.A. Sobyanin, Appl. Catal. A Gen., 220, 123 (2001); https://doi.org/10.1016/S0926-860X(01)00708-6
- V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit and C. Mirodatos, J. Power Sources, 105, 26 (2002); https://doi.org/10.1016/S0378-7753(01)00922-3
- H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde, J. Am. Chem. Soc., 75, 215 (1953); https://doi.org/10.1021/ja01097a057
- M. Zahmakiran and S. Özkar, J. Mol. Catal. Chem., 258, 95 (2006); https://doi.org/10.1016/j.molcata.2006.05.037
- M. Chandra and Q. Xu, J. Power Sources, 159, 855 (2006); https://doi.org/10.1016/j.jpowsour.2005.12.033
- C. Wu, F. Wu, Y. Bai, B. Yi and H. Zhang, Mater. Lett., 59, 1748 (2005); https://doi.org/10.1016/j.matlet.2005.01.058
- S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, J. Power Sources, 85, 186 (2000); https://doi.org/10.1016/S0378-7753(99)00301-8
- Y. Kojima, K.I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai and H. Hayashi, Int. J. Hydrogen Energy, 27, 1029 (2002); https://doi.org/10.1016/S0360-3199(02)00014-9
- S. Kapoor, F.A. Barnabas, M.C. Sauer Jr., D. Meisel and C.D. Jonah, J. Phys. Chem., 99, 6857 (1995); https://doi.org/10.1021/j100018a017
- Y. Bi and G. Lu, Int. J. Hydrogen Energy, 33, 2225 (2008); https://doi.org/10.1016/j.ijhydene.2008.02.064
- X. Liu, W. Chen and X. Zhang, Nanomaterials, 12, 1890 (2022); https://doi.org/10.3390/nano12111890
- X. Chen, H. Zhang, Z. Xia, S. Zhang and Y. Ma, Catal. Sci. Technol., 9, 783 (2019); https://doi.org/10.1039/C8CY02079E
- M.K. Awasthi and S.K. Singh, Sustain. Energy Fuels, 5, 549 (2021); https://doi.org/10.1039/D0SE01330G
References
W.B. Kim, T. Voitl, G.J. Rodriguez-Rivera and J.A. Dumesic, Science, 305, 1280 (2004); https://doi.org/10.1126/science.1100860
M.M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria and V. Compañ, Polymers, 13, 3064 (2021); https://doi.org/10.3390/polym13183064
T. Tabakova, V. Idakiev, K. Tenchev, F. Boccuzzi, M. Manzoli and A. Chiorino, Appl. Catal. B, 63, 94 (2006); https://doi.org/10.1016/j.apcatb.2005.09.017
W. Zeng, B. Guan, Z. Zhuang, J. Chen, L. Zhu, Z. Ma, X. Hu, C. Zhu, S. Zhao, K. Shu, H. Dang, T. Zhu and Z. Huang, Int. J. Hydrogen Energy, 102, 222 (2025); https://doi.org/10.1016/j.ijhydene.2024.12.513
X. Chen, S.L. Suib, Y. Hayashi and H. Matsumoto, J. Catal., 201, 198 (2001); https://doi.org/10.1006/jcat.2001.3252
Y. Calzavara, C. Joussot-Dubien, G. Boissonnet and S. Sarrade, Energy Convers. Manage., 46, 615 (2005); https://doi.org/10.1016/j.enconman.2004.04.003
T. Hanaoka, T. Yoshida, S. Fujimoto, K. Kamei, M. Harada, Y. Suzuki, H. Hatano, S. Yokoyama and T. Minowa, Biomass Bioenergy, 28, 63 (2005); https://doi.org/10.1016/j.biombioe.2004.03.009
I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J.D. Grunwaldt and F. Schuth, Appl. Catal. A Gen., 302, 215 (2006); https://doi.org/10.1016/j.apcata.2006.01.014
T. Tanabe, S. Kameoka and A.P. Tsai, Catal. Today, 111, 153 (2006); https://doi.org/10.1016/j.cattod.2005.11.003
S. Liu, K. Takahashi, K. Fuchigami and K. Uematsu, Appl. Catal. A Gen., 299, 58 (2006); https://doi.org/10.1016/j.apcata.2005.10.012
D. Cheng, X. Zhu, Y. Ben, F. He, L. Cui and C. Liu, Catal. Today, 115, 205 (2006); https://doi.org/10.1016/j.cattod.2006.02.063
A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chem. Commun., 9, 851 (2001); https://doi.org/10.1039/b101455m
S. Cavallaro and S. Freni, Int. J. Hydrogen Energy, 21, 465 (1996); https://doi.org/10.1016/0360-3199(95)00107-7
F.J. Marino, E.G. Cerrella, S. Duhalde, M. Jobbagy and M. Laborde, Int. J. Hydrogen Energy, 23, 1095 (1998); https://doi.org/10.1016/S0360-3199(97)00173-0
V.V. Galvita, G.L. Semin, V.D. Belyaev, V.A. Semikolenov, P. Tsiakaras and V.A. Sobyanin, Appl. Catal. A Gen., 220, 123 (2001); https://doi.org/10.1016/S0926-860X(01)00708-6
V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit and C. Mirodatos, J. Power Sources, 105, 26 (2002); https://doi.org/10.1016/S0378-7753(01)00922-3
H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and E.K. Hyde, J. Am. Chem. Soc., 75, 215 (1953); https://doi.org/10.1021/ja01097a057
M. Zahmakiran and S. Özkar, J. Mol. Catal. Chem., 258, 95 (2006); https://doi.org/10.1016/j.molcata.2006.05.037
M. Chandra and Q. Xu, J. Power Sources, 159, 855 (2006); https://doi.org/10.1016/j.jpowsour.2005.12.033
C. Wu, F. Wu, Y. Bai, B. Yi and H. Zhang, Mater. Lett., 59, 1748 (2005); https://doi.org/10.1016/j.matlet.2005.01.058
S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, J. Power Sources, 85, 186 (2000); https://doi.org/10.1016/S0378-7753(99)00301-8
Y. Kojima, K.I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai and H. Hayashi, Int. J. Hydrogen Energy, 27, 1029 (2002); https://doi.org/10.1016/S0360-3199(02)00014-9
S. Kapoor, F.A. Barnabas, M.C. Sauer Jr., D. Meisel and C.D. Jonah, J. Phys. Chem., 99, 6857 (1995); https://doi.org/10.1021/j100018a017
Y. Bi and G. Lu, Int. J. Hydrogen Energy, 33, 2225 (2008); https://doi.org/10.1016/j.ijhydene.2008.02.064
X. Liu, W. Chen and X. Zhang, Nanomaterials, 12, 1890 (2022); https://doi.org/10.3390/nano12111890
X. Chen, H. Zhang, Z. Xia, S. Zhang and Y. Ma, Catal. Sci. Technol., 9, 783 (2019); https://doi.org/10.1039/C8CY02079E
M.K. Awasthi and S.K. Singh, Sustain. Energy Fuels, 5, 549 (2021); https://doi.org/10.1039/D0SE01330G