Copyright (c) 2025 Archna Talwar, Avni Nayyar, Shruti Anand, Manaal Zahera, Prachi Singh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bioconjugated ZnO Nanoparticles from Solanum nigrum Leaves: Monosaccharide Unlocks Potent Antidiabetic and Antioxidant Power
Corresponding Author(s) : Archna Talwar
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
The research focuses on conjugating biogenically synthesized zinc oxide nanoparticles (ZnO NPs) with glucose to analyse the inhibitory potential of ZnO nanoparticles against α-amylase. This study proposes, for the first time, that glucose-modified ZnO NPs may alleviate oxidative stress that hinders the formation of advanced glycation end products (AGEs). ZnO NPs are synthesized by using an aqueous leaf extract of Solanum nigrum and characterized using different characterization techniques such as UV-Vis spectroscopy, FESEM, TEM, FTIR, DLS/Zeta and X-ray diffraction. The ZnO NPs were assessed for in vitro antioxidant potential, confirming better antioxidant potential of GC-NP (IC50 = 45.7 ± 0.18 µg/mL) than UC-NP (IC50 = 53.4 ± 0.031 µg/mL). The bio-functionalized ZnO NPs were evaluated for their α-amylase inhibitory activity, showing enhanced inhibition by GC-NP (IC50 = 521 ± 0.004 µg/mL) compared to UC-NP (IC50 = 530 ± 0.01 µg/mL), attributed to tailored surface interactions. Overall, the study highlights that biofunctionalized ZnO NPs exhibit promising potential as a future drug candidate for targeted drug delivery in diabetes management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.A. Debele and Y. Park, Life, 12, 2078 (2022); https://doi.org/10.3390/life12122078
- P.M. Mazumder, P. Rathinavelusamy and D. Sasmal, Asian Pac. J. Trop. Dis., 2, S969 (2012); https://doi.org/10.1016/S2222-1808(12)60303-X
- International Diabetes Federation Diabetes Atlas, https://idf.org/
- N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. Da Rocha Fernandes, A.W. Ohlrogge and B. Malanda, Diabetes Res. Clin. Pract., 138, 271 (2018); https://doi.org/10.1016/j.diabres.2018.02.023
- Diabetes, https://www.who.int/news-room/fact-sheets/detail/diabetes
- Y. Chen, Z. Meng, Y. Li, S. Liu, P. Hu and E. Luo, Mol. Med., 30, 141 (2024); https://doi.org/10.1186/s10020-024-00905-9
- A. Talwar, N. Chakraborty, M. Zahera, S. Anand, I. Ahmad, S. Siddiqui, A. Nayyar, A. Haque and M. Saeed, J. Chem., 2024, 6111603 (2024); https://doi.org/10.1155/2024/6111603
- G. Boden, C. Homko, C.A. Barrero, T.P. Stein, X. Chen, P. Cheung, C. Fecchio, S. Koller and S. Merali, Sci. Transl. Med., 7, 304re7 (2015); https://doi.org/10.1126/scitranslmed.aac4765
- A. Tentolouris, P. Vlachakis, E. Tzeravini, I. Eleftheriadou and N. Tentolouris, Int. J. Environ. Res. Public Health, 16, 2965 (2019); https://doi.org/10.3390/ijerph16162965
- F. Zannad, J.P. Ferreira, S.J. Pocock, S.D. Anker, J. Butler, G. Filippatos, M. Brueckmann, A.P. Ofstad, E. Pfarr, W. Jamal and M. Packer, Lancet, 396, 819 (2020); https://doi.org/10.1016/S0140-6736(20)31824-9
- S. Mondal, N. Roy, R.A. Laskar, I. Sk, S. Basu, D. Mandal and N.A. Begum, Colloids Surf. B Biointerfaces, 82, 497 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.007
- A. Samadder, World J. Transl. Med., 3, 84 (2014); https://doi.org/10.5528/wjtm.v3.i2.84
- M.A. Hassaan, Int. J. Atmospheric Ocean. Sci., 2, 10 (2018); https://doi.org/10.11648/j.ijaos.20180201.12
- C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2021); https://doi.org/10.3390/biom12010031
- H. Bar, D. Bhui, G.P. Sahoo, P. Sarkar, S.P. De and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 339, 134 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.008
- G. Saibu and O. Adu, J. Res. Rev. Sci., 7, (2020); https://doi.org/10.36108/jrrslasu/0202.70.0120
- N. Asif, M. Amir and T. Fatma, Bioprocess Biosyst. Eng., 46, 1377 (2023); https://doi.org/10.1007/s00449-023-02886-1
- V. Souza, C. Rodrigues, S. Valente, C. Pimenta, J. Pires, M. Alves, C. Santos, I. Coelhoso and A. Fernando, Coatings, 10, 110 (2020); https://doi.org/10.3390/coatings10020110
- M.Y. Al-darwesh, S.S. Ibrahim and M.A. Mohammed, Results Chem., 7, 101368 (2024); https://doi.org/10.1016/j.rechem.2024.101368
- J. Jansen, W. Karges and L. Rink, J. Nutr. Biochem., 20, 399 (2009); https://doi.org/10.1016/j.jnutbio.2009.01.009
- G. Rehman, M. Umar, N. Shah, M. Hamayun, A. Ali, W. Khan, A. Khan, S. Ahmad, A.F. Alrefaei, M.H. Almutairi, Y.-S. Moon and S. Ali, Pharmaceuticals, 16, 1677 (2023); https://doi.org/10.3390/ph16121677
- N.A.N. Mohamad, N.A. Arham, J. Jai and A. Hadi, Adv. Mat. Res., 832, 350 (2013); https://doi.org/10.4028/www.scientific.net/AMR.832.350
- A. Kanchana, S. Devarajan and S.R. Ayyappan, Nano-Micro Lett., 2, 169 (2010); https://doi.org/10.1007/BF03353637
- V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Nat., 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
- S. Kheirouri, M. Alizadeh and V. Maleki, Clin. Exp. Pharmacol. Physiol., 45, 491 (2018); https://doi.org/10.1111/1440-1681.12904
- R.A. Sperling and W.J. Parak, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 368, 1333 (2010); https://doi.org/10.1098/rsta.2009.0273
- S. Svenson and R.K. Prud’homme, Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery; Nanostructure Science and Technology; Springer US: Boston, MA (2012).
- A. Banerjee, N. Dasgupta and B. De, Food Chem., 90, 727 (2005); https://doi.org/10.1016/j.foodchem.2004.04.033
- H.M. Abdelmigid, N.A. Hussien, A.A. Alyamani, M.M. Morsi, N.M. AlSufyani and H.A. Kadi, Molecules, 27, 1236 (2022); https://doi.org/10.3390/molecules27041236
- M.A. Armani, A. Abu-Taleb, N. Remalli, M. Abdullah, V.V.S.S. Srikanth and N.K. Labhasetwar, RSC Adv., 6, 44145 (2016); https://doi.org/10.1039/C6RA05061A
- N. Bahari, N. Hashim, K. Abdan, A. Md Akim, B. Maringgal and L. Al-Shdifat, Nanomaterials, 13, 1244 (2023); https://doi.org/10.3390/nano13071244
- R. Javed, M. Zia, S. Naz, S.O. Aisida, N.U. Ain and Q. Ao, J. Nanobiotechnology, 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
- S. Gulati, M. Sachdeva and K.K. Bhasin, AIP Conf. Proc., 1953, 030214 (2018); https://doi.org/10.1063/1.5032549
- G. Brancolini, V.M. Rotello and S. Corni, Int. J. Mol. Sci., 23, 2368 (2022); https://doi.org/10.3390/ijms23042368
- Z. Bahadoran, P. Mirmiran and F. Azizi, J. Diabetes Metab. Disord., 12, 43 (2013); https://doi.org/10.1186/2251-6581-12-43
- S. Yagihashi, H. Mizukami and K. Sugimoto, J. Diabetes Investig., 2, 18 (2011); https://doi.org/10.1111/j.2040-1124.2010.00070.x
- Q. Kang and C. Yang, Redox Biol., 37, 101799 (2020); https://doi.org/10.1016/j.redox.2020.101799
- K. Gąsiorowski, B. Brokos, V. Echeverria, G.E. Barreto and J. Leszek, Mol. Neurobiol., 55, 1463 (2018); https://doi.org/10.1007/s12035-017-0419-4
- P.J. Thornalley, A. Langborg and H.S. Minhas, Biochem. J., 344, 109 (1999); https://doi.org/10.1042/bj3440109
- A. Parveen, R. Sultana, S.M. Lee, T.H. Kim and S.Y. Kim, Arch. Pharm. Res., 44, 378 (2021); https://doi.org/10.1007/s12272-021-01323-9
- D. Bhuyan, B. Malakar, S.S. Arbuj and L. Saikia, RSC Adv., 4, 8256 (2014); https://doi.org/10.1039/c3ra45818k
- E. Darvishi, D. Kahrizi and E. Arkan, J. Mol. Liq., 286, 110831 (2019); https://doi.org/10.1016/j.molliq.2019.04.108
- B. Bulcha, J. Leta Tesfaye, D. Anatol, R. Shanmugam, L.P. Dwarampudi, N. Nagaprasad, V. Bhargavi and R. Krishnaraj, J. Nanomater., 2021, 8617290 (2021); https://doi.org/10.1155/2021/8617290
- S. Gopalakrishnan and P. Kolandaivel, Mater. Chem. Phys., 181, 248 (2016); https://doi.org/10.1016/j.matchemphys.2016.06.056
- G. Patwari, P.K. Kalita and R. Singha, Mater. Sci. Pol., 34, 69 (2016); https://doi.org/10.1515/msp-2016-0030
- W.J. Jeyarani, T. Tenkyong, N. Bachan, D.A. Kumar and J.M. Shyla, Adv. Powder Technol., 27, 338 (2016); https://doi.org/10.1016/j.apt.2016.01.006
- A. Goudarzi, E. Zabihi, D. Shahrampour and M. Heydari Sorshejani, J. Mater. Sci. Mater. Electron., 33, 22798 (2022); https://doi.org/10.1007/s10854-022-09047-2
- P.V. Gaikwad, P.K. Pujari and A. Kshirsagar, ACS Omega, 3, 7692 (2018); https://doi.org/10.1021/acsomega.8b00998
- S.B. Rana, V.K. Bhardwaj, S. Singh, A. Singh and N. Kaur, J. Exp. Nanosci., 9, 877 (2014); https://doi.org/10.1080/17458080.2012.736640
- C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen and W.-F. Pong, Appl. Phys. Lett., 88, 241905 (2006); https://doi.org/10.1063/1.2211047
- N. Govindan, K. Vairaprakasam, C. Chinnasamy, T. Sivalingam and M.K.A. Mohammed, Mater. Adv., 1, 3460 (2020); https://doi.org/10.1039/D0MA00698J
- D. Lilhare and A. Khare, Mater. Chem. Phys., 270, 124835 (2021); https://doi.org/10.1016/j.matchemphys.2021.124835
- B. Naiel, M. Fawzy, M.W.A. Halmy and A.E.D. Mahmoud, Sci. Rep., 12, 20370 (2022); https://doi.org/10.1038/s41598-022-24805-2
- A.A. Barzinjy and H.H. Azeez, SN Appl. Sci., 2, 991 (2020); https://doi.org/10.1007/s42452-020-2813-1
- R.M.I. Elsamra, M.S. Masoud, A.A. Zidan, G.M.E. Zokm and M.A. Okbah, Biomass Convers. Biorefin., 14, 16843 (2024); https://doi.org/10.1007/s13399-022-03709-1
- E.F. El-Belely, M.M.S. Farag, H.A. Said, A.S. Amin, E. Azab, A.A. Gobouri and A. Fouda, Nanomaterials, 11, 95 (2021); https://doi.org/10.3390/nano11010095
- S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram and P.K. Praseetha, Mater. Sci. Semicond. Process., 82, 39 (2018); https://doi.org/10.1016/j.mssp.2018.03.017
- P.A. Wiguna, N. Yudasari, D. Djuhana and C. Imawan, J. Phys.: Conf. Ser., 1317, 012061 (2018); https://doi.org/10.1088/1742-6596/1317/1/012061
- R. Sattari, G.R. Khayati and R. Hoshyar, Mater. Chem. Phys., 241, 122438 (2020); https://doi.org/10.1016/j.matchemphys.2019.122438
- K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan and S. Kannan, Process Biochem., 49, 160 (2014); https://doi.org/10.1016/j.procbio.2013.10.007
- E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, W. Szmaja and J. Grobelny, J. Nanomater., 2013, 313081 (2013); https://doi.org/10.1155/2013/313081
- S.K. Filippov, R. Khusnutdinov, A. Murmiliuk, L.Ya. Zakharova, W. Inam, H. Zhang and V.V. Khutoryanskiy, Mater. Horiz., 10, 5354 (2023); https://doi.org/10.1039/D3MH00717K
- X. Wang, O. Ramström and M. Yan, Analyst, 136, 4174 (2011); https://doi.org/10.1039/c1an15469a
- F. Kalhori, H. Yazdyani, F. Khademorezaeian, N. Hamzkanloo, P. Mokaberi, S. Hosseini and J. Chamani, Luminescence, 37, 1836 (2022); https://doi.org/10.1002/bio.4360
- H.M.H. Al-Kordy, S.A. Sabry and M.E.M. Mabrouk, Sci. Rep., 11, 10924 (2021); https://doi.org/10.1038/s41598-021-90408-y
- B.D. Lakshmi, B.V. Vamsi Krishna, P.T. Rao, A. Marukurti, V. K, E.B. Sk and K.R. Rao, ACS Omega, 9, 38396 (2024); https://doi.org/10.1021/acsomega.4c01727
- Z. Lukáčová Bujňáková, E. Dutková, J. Jakubíková, D. Cholujová, R. Varhač, L. Borysenko and I. Melnyk, Pharmaceuticals, 16, 1219 (2023); https://doi.org/10.3390/ph16091219
- A.K. Sidhu, N. Verma and P. Kaushal, Front. Nanotechnol., 3, 801620 (2022); https://doi.org/10.3389/fnano.2021.801620
- A. Fouda, E. Saied, A.M. Eid, F. Kouadri, A.M. Alemam, M.F. Hamza, M. Alharbi, A. Elkelish and S.E.-D. Hassan, J. Funct. Biomater., 14, 205 (2023); https://doi.org/10.3390/jfb14040205.
- A. Aldalbahi, S. Alterary, R.A.A. Almoghim, M.A. Awad, N.S. Aldosari, S.F. Alghannam, A.N. Alabdan, S. Alharbi, B.A.M. Alateeq, A.A. Al Mohsen, M.A. Alkathiri and R.A. Alrashed, Molecules, 25, 4198 (2020); https://doi.org/10.3390/molecules25184198
- M. Danaei, M. Dehghankhold, S. Ataei, F.H. Davarani, R. Javanmard, A. Dokhani, S. Khorasani and M.R. Mozafari, Pharmaceutics, 10, 57 (2018); https://doi.org/10.3390/pharmaceutics10020057
- M. Ramesh, M. Anbuvannan and G. Viruthagiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 864 (2015); https://doi.org/10.1016/j.saa.2014.09.105
- U.L. Ifeanyichukwu, O.E. Fayemi and C.N. Ateba, Molecules, 25, 4521 (2020); https://doi.org/10.3390/molecules25194521
- R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha and D.N. Rao, Adv. Sci. Lett., 3, 138 (2010); https://doi.org/10.1166/asl.2010.1099
- S.K.K. Supin, P.N.P.M. Parvathy and M. Vasundhara, RSC Adv., 13, 1497 (2023); https://doi.org/10.1039/D2RA06967A
- S.S. Sana, D.V. Kumbhakar, A. Pasha, S.C. Pawar, A.N. Grace, R.P. Singh, V.-H. Nguyen, Q.V. Le and W. Peng, Molecules, 25, 4896 (2020); https://doi.org/10.3390/molecules25214896
- M.D. Jayappa, C.K. Ramaiah, M.A.P. Kumar, D. Suresh, A. Prabhu, R.P. Devasya and S. Sheikh, Appl. Nanosci., 10, 3057 (2020); https://doi.org/10.1007/s13204-020-01382-2
- P. Wongsa, P. Phatikulrungsun and S.F.T.-I.R. Prathumthong, Sci. Rep., 12, 6631 (2022); https://doi.org/10.1038/s41598-022-10669-z
- K.B. Ishnava, J.B. Chauhan and M.B. Barad, Saudi J. Biol. Sci., 20, 69 (2013); https://doi.org/10.1016/j.sjbs.2012.11.003
- D.K. Buslov, N.A. Nikonenko, N.I. Sushko and R.G. Zhbankov, Spectrochim. Acta A Mol. Biomol. Spectrosc., 55, 229 (1998); https://doi.org/10.1016/S1386-1425(98)00289-3
- P. Rajiv, S. Rajeshwari and R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 384 (2013); https://doi.org/10.1016/j.saa.2013.04.072
- E.P. Etape, J. Foba-Tendo, L.J. Ngolui, B.V. Namondo, F.C. Yollande and M.B.N. Nguimezong, J. Nanomater., 2018, 1 (2018); https://doi.org/10.1155/2018/9072325
- A. Jayachandran, A. T.R and A.S. Nair, Biochem. Biophys. Rep., 26, 100995 (2021); https://doi.org/10.1016/j.bbrep.2021.100995
- A. Campisi, R. Acquaviva, G. Raciti, A. Duro, M. Rizzo and N.A. Santagati, Foods, 8, 63 (2019); https://doi.org/10.3390/foods8020063
- A.K. Tiwari, S. Jha, S.K. Tripathi, R. Shukla, R.R. Awasthi, A.K. Bhardwaj, A.K. Singh and A. Dikshit, Discov. Appl. Sci., 6, 399 (2024); https://doi.org/10.1007/s42452-024-06049-z
- Y. Song, F. Yang, M. Ma, Y. Kang, A. Hui, Z. Quan and A. Wang, Lebensm. Wiss. Technol., 165, 113762 (2022); https://doi.org/10.1016/j.lwt.2022.113762
References
T.A. Debele and Y. Park, Life, 12, 2078 (2022); https://doi.org/10.3390/life12122078
P.M. Mazumder, P. Rathinavelusamy and D. Sasmal, Asian Pac. J. Trop. Dis., 2, S969 (2012); https://doi.org/10.1016/S2222-1808(12)60303-X
International Diabetes Federation Diabetes Atlas, https://idf.org/
N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. Da Rocha Fernandes, A.W. Ohlrogge and B. Malanda, Diabetes Res. Clin. Pract., 138, 271 (2018); https://doi.org/10.1016/j.diabres.2018.02.023
Diabetes, https://www.who.int/news-room/fact-sheets/detail/diabetes
Y. Chen, Z. Meng, Y. Li, S. Liu, P. Hu and E. Luo, Mol. Med., 30, 141 (2024); https://doi.org/10.1186/s10020-024-00905-9
A. Talwar, N. Chakraborty, M. Zahera, S. Anand, I. Ahmad, S. Siddiqui, A. Nayyar, A. Haque and M. Saeed, J. Chem., 2024, 6111603 (2024); https://doi.org/10.1155/2024/6111603
G. Boden, C. Homko, C.A. Barrero, T.P. Stein, X. Chen, P. Cheung, C. Fecchio, S. Koller and S. Merali, Sci. Transl. Med., 7, 304re7 (2015); https://doi.org/10.1126/scitranslmed.aac4765
A. Tentolouris, P. Vlachakis, E. Tzeravini, I. Eleftheriadou and N. Tentolouris, Int. J. Environ. Res. Public Health, 16, 2965 (2019); https://doi.org/10.3390/ijerph16162965
F. Zannad, J.P. Ferreira, S.J. Pocock, S.D. Anker, J. Butler, G. Filippatos, M. Brueckmann, A.P. Ofstad, E. Pfarr, W. Jamal and M. Packer, Lancet, 396, 819 (2020); https://doi.org/10.1016/S0140-6736(20)31824-9
S. Mondal, N. Roy, R.A. Laskar, I. Sk, S. Basu, D. Mandal and N.A. Begum, Colloids Surf. B Biointerfaces, 82, 497 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.007
A. Samadder, World J. Transl. Med., 3, 84 (2014); https://doi.org/10.5528/wjtm.v3.i2.84
M.A. Hassaan, Int. J. Atmospheric Ocean. Sci., 2, 10 (2018); https://doi.org/10.11648/j.ijaos.20180201.12
C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2021); https://doi.org/10.3390/biom12010031
H. Bar, D. Bhui, G.P. Sahoo, P. Sarkar, S.P. De and A. Misra, Colloids Surf. A Physicochem. Eng. Asp., 339, 134 (2009); https://doi.org/10.1016/j.colsurfa.2009.02.008
G. Saibu and O. Adu, J. Res. Rev. Sci., 7, (2020); https://doi.org/10.36108/jrrslasu/0202.70.0120
N. Asif, M. Amir and T. Fatma, Bioprocess Biosyst. Eng., 46, 1377 (2023); https://doi.org/10.1007/s00449-023-02886-1
V. Souza, C. Rodrigues, S. Valente, C. Pimenta, J. Pires, M. Alves, C. Santos, I. Coelhoso and A. Fernando, Coatings, 10, 110 (2020); https://doi.org/10.3390/coatings10020110
M.Y. Al-darwesh, S.S. Ibrahim and M.A. Mohammed, Results Chem., 7, 101368 (2024); https://doi.org/10.1016/j.rechem.2024.101368
J. Jansen, W. Karges and L. Rink, J. Nutr. Biochem., 20, 399 (2009); https://doi.org/10.1016/j.jnutbio.2009.01.009
G. Rehman, M. Umar, N. Shah, M. Hamayun, A. Ali, W. Khan, A. Khan, S. Ahmad, A.F. Alrefaei, M.H. Almutairi, Y.-S. Moon and S. Ali, Pharmaceuticals, 16, 1677 (2023); https://doi.org/10.3390/ph16121677
N.A.N. Mohamad, N.A. Arham, J. Jai and A. Hadi, Adv. Mat. Res., 832, 350 (2013); https://doi.org/10.4028/www.scientific.net/AMR.832.350
A. Kanchana, S. Devarajan and S.R. Ayyappan, Nano-Micro Lett., 2, 169 (2010); https://doi.org/10.1007/BF03353637
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Nat., 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
S. Kheirouri, M. Alizadeh and V. Maleki, Clin. Exp. Pharmacol. Physiol., 45, 491 (2018); https://doi.org/10.1111/1440-1681.12904
R.A. Sperling and W.J. Parak, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 368, 1333 (2010); https://doi.org/10.1098/rsta.2009.0273
S. Svenson and R.K. Prud’homme, Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery; Nanostructure Science and Technology; Springer US: Boston, MA (2012).
A. Banerjee, N. Dasgupta and B. De, Food Chem., 90, 727 (2005); https://doi.org/10.1016/j.foodchem.2004.04.033
H.M. Abdelmigid, N.A. Hussien, A.A. Alyamani, M.M. Morsi, N.M. AlSufyani and H.A. Kadi, Molecules, 27, 1236 (2022); https://doi.org/10.3390/molecules27041236
M.A. Armani, A. Abu-Taleb, N. Remalli, M. Abdullah, V.V.S.S. Srikanth and N.K. Labhasetwar, RSC Adv., 6, 44145 (2016); https://doi.org/10.1039/C6RA05061A
N. Bahari, N. Hashim, K. Abdan, A. Md Akim, B. Maringgal and L. Al-Shdifat, Nanomaterials, 13, 1244 (2023); https://doi.org/10.3390/nano13071244
R. Javed, M. Zia, S. Naz, S.O. Aisida, N.U. Ain and Q. Ao, J. Nanobiotechnology, 18, 172 (2020); https://doi.org/10.1186/s12951-020-00704-4
S. Gulati, M. Sachdeva and K.K. Bhasin, AIP Conf. Proc., 1953, 030214 (2018); https://doi.org/10.1063/1.5032549
G. Brancolini, V.M. Rotello and S. Corni, Int. J. Mol. Sci., 23, 2368 (2022); https://doi.org/10.3390/ijms23042368
Z. Bahadoran, P. Mirmiran and F. Azizi, J. Diabetes Metab. Disord., 12, 43 (2013); https://doi.org/10.1186/2251-6581-12-43
S. Yagihashi, H. Mizukami and K. Sugimoto, J. Diabetes Investig., 2, 18 (2011); https://doi.org/10.1111/j.2040-1124.2010.00070.x
Q. Kang and C. Yang, Redox Biol., 37, 101799 (2020); https://doi.org/10.1016/j.redox.2020.101799
K. Gąsiorowski, B. Brokos, V. Echeverria, G.E. Barreto and J. Leszek, Mol. Neurobiol., 55, 1463 (2018); https://doi.org/10.1007/s12035-017-0419-4
P.J. Thornalley, A. Langborg and H.S. Minhas, Biochem. J., 344, 109 (1999); https://doi.org/10.1042/bj3440109
A. Parveen, R. Sultana, S.M. Lee, T.H. Kim and S.Y. Kim, Arch. Pharm. Res., 44, 378 (2021); https://doi.org/10.1007/s12272-021-01323-9
D. Bhuyan, B. Malakar, S.S. Arbuj and L. Saikia, RSC Adv., 4, 8256 (2014); https://doi.org/10.1039/c3ra45818k
E. Darvishi, D. Kahrizi and E. Arkan, J. Mol. Liq., 286, 110831 (2019); https://doi.org/10.1016/j.molliq.2019.04.108
B. Bulcha, J. Leta Tesfaye, D. Anatol, R. Shanmugam, L.P. Dwarampudi, N. Nagaprasad, V. Bhargavi and R. Krishnaraj, J. Nanomater., 2021, 8617290 (2021); https://doi.org/10.1155/2021/8617290
S. Gopalakrishnan and P. Kolandaivel, Mater. Chem. Phys., 181, 248 (2016); https://doi.org/10.1016/j.matchemphys.2016.06.056
G. Patwari, P.K. Kalita and R. Singha, Mater. Sci. Pol., 34, 69 (2016); https://doi.org/10.1515/msp-2016-0030
W.J. Jeyarani, T. Tenkyong, N. Bachan, D.A. Kumar and J.M. Shyla, Adv. Powder Technol., 27, 338 (2016); https://doi.org/10.1016/j.apt.2016.01.006
A. Goudarzi, E. Zabihi, D. Shahrampour and M. Heydari Sorshejani, J. Mater. Sci. Mater. Electron., 33, 22798 (2022); https://doi.org/10.1007/s10854-022-09047-2
P.V. Gaikwad, P.K. Pujari and A. Kshirsagar, ACS Omega, 3, 7692 (2018); https://doi.org/10.1021/acsomega.8b00998
S.B. Rana, V.K. Bhardwaj, S. Singh, A. Singh and N. Kaur, J. Exp. Nanosci., 9, 877 (2014); https://doi.org/10.1080/17458080.2012.736640
C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen and W.-F. Pong, Appl. Phys. Lett., 88, 241905 (2006); https://doi.org/10.1063/1.2211047
N. Govindan, K. Vairaprakasam, C. Chinnasamy, T. Sivalingam and M.K.A. Mohammed, Mater. Adv., 1, 3460 (2020); https://doi.org/10.1039/D0MA00698J
D. Lilhare and A. Khare, Mater. Chem. Phys., 270, 124835 (2021); https://doi.org/10.1016/j.matchemphys.2021.124835
B. Naiel, M. Fawzy, M.W.A. Halmy and A.E.D. Mahmoud, Sci. Rep., 12, 20370 (2022); https://doi.org/10.1038/s41598-022-24805-2
A.A. Barzinjy and H.H. Azeez, SN Appl. Sci., 2, 991 (2020); https://doi.org/10.1007/s42452-020-2813-1
R.M.I. Elsamra, M.S. Masoud, A.A. Zidan, G.M.E. Zokm and M.A. Okbah, Biomass Convers. Biorefin., 14, 16843 (2024); https://doi.org/10.1007/s13399-022-03709-1
E.F. El-Belely, M.M.S. Farag, H.A. Said, A.S. Amin, E. Azab, A.A. Gobouri and A. Fouda, Nanomaterials, 11, 95 (2021); https://doi.org/10.3390/nano11010095
S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram and P.K. Praseetha, Mater. Sci. Semicond. Process., 82, 39 (2018); https://doi.org/10.1016/j.mssp.2018.03.017
P.A. Wiguna, N. Yudasari, D. Djuhana and C. Imawan, J. Phys.: Conf. Ser., 1317, 012061 (2018); https://doi.org/10.1088/1742-6596/1317/1/012061
R. Sattari, G.R. Khayati and R. Hoshyar, Mater. Chem. Phys., 241, 122438 (2020); https://doi.org/10.1016/j.matchemphys.2019.122438
K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan and S. Kannan, Process Biochem., 49, 160 (2014); https://doi.org/10.1016/j.procbio.2013.10.007
E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, W. Szmaja and J. Grobelny, J. Nanomater., 2013, 313081 (2013); https://doi.org/10.1155/2013/313081
S.K. Filippov, R. Khusnutdinov, A. Murmiliuk, L.Ya. Zakharova, W. Inam, H. Zhang and V.V. Khutoryanskiy, Mater. Horiz., 10, 5354 (2023); https://doi.org/10.1039/D3MH00717K
X. Wang, O. Ramström and M. Yan, Analyst, 136, 4174 (2011); https://doi.org/10.1039/c1an15469a
F. Kalhori, H. Yazdyani, F. Khademorezaeian, N. Hamzkanloo, P. Mokaberi, S. Hosseini and J. Chamani, Luminescence, 37, 1836 (2022); https://doi.org/10.1002/bio.4360
H.M.H. Al-Kordy, S.A. Sabry and M.E.M. Mabrouk, Sci. Rep., 11, 10924 (2021); https://doi.org/10.1038/s41598-021-90408-y
B.D. Lakshmi, B.V. Vamsi Krishna, P.T. Rao, A. Marukurti, V. K, E.B. Sk and K.R. Rao, ACS Omega, 9, 38396 (2024); https://doi.org/10.1021/acsomega.4c01727
Z. Lukáčová Bujňáková, E. Dutková, J. Jakubíková, D. Cholujová, R. Varhač, L. Borysenko and I. Melnyk, Pharmaceuticals, 16, 1219 (2023); https://doi.org/10.3390/ph16091219
A.K. Sidhu, N. Verma and P. Kaushal, Front. Nanotechnol., 3, 801620 (2022); https://doi.org/10.3389/fnano.2021.801620
A. Fouda, E. Saied, A.M. Eid, F. Kouadri, A.M. Alemam, M.F. Hamza, M. Alharbi, A. Elkelish and S.E.-D. Hassan, J. Funct. Biomater., 14, 205 (2023); https://doi.org/10.3390/jfb14040205.
A. Aldalbahi, S. Alterary, R.A.A. Almoghim, M.A. Awad, N.S. Aldosari, S.F. Alghannam, A.N. Alabdan, S. Alharbi, B.A.M. Alateeq, A.A. Al Mohsen, M.A. Alkathiri and R.A. Alrashed, Molecules, 25, 4198 (2020); https://doi.org/10.3390/molecules25184198
M. Danaei, M. Dehghankhold, S. Ataei, F.H. Davarani, R. Javanmard, A. Dokhani, S. Khorasani and M.R. Mozafari, Pharmaceutics, 10, 57 (2018); https://doi.org/10.3390/pharmaceutics10020057
M. Ramesh, M. Anbuvannan and G. Viruthagiri, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 864 (2015); https://doi.org/10.1016/j.saa.2014.09.105
U.L. Ifeanyichukwu, O.E. Fayemi and C.N. Ateba, Molecules, 25, 4521 (2020); https://doi.org/10.3390/molecules25194521
R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha and D.N. Rao, Adv. Sci. Lett., 3, 138 (2010); https://doi.org/10.1166/asl.2010.1099
S.K.K. Supin, P.N.P.M. Parvathy and M. Vasundhara, RSC Adv., 13, 1497 (2023); https://doi.org/10.1039/D2RA06967A
S.S. Sana, D.V. Kumbhakar, A. Pasha, S.C. Pawar, A.N. Grace, R.P. Singh, V.-H. Nguyen, Q.V. Le and W. Peng, Molecules, 25, 4896 (2020); https://doi.org/10.3390/molecules25214896
M.D. Jayappa, C.K. Ramaiah, M.A.P. Kumar, D. Suresh, A. Prabhu, R.P. Devasya and S. Sheikh, Appl. Nanosci., 10, 3057 (2020); https://doi.org/10.1007/s13204-020-01382-2
P. Wongsa, P. Phatikulrungsun and S.F.T.-I.R. Prathumthong, Sci. Rep., 12, 6631 (2022); https://doi.org/10.1038/s41598-022-10669-z
K.B. Ishnava, J.B. Chauhan and M.B. Barad, Saudi J. Biol. Sci., 20, 69 (2013); https://doi.org/10.1016/j.sjbs.2012.11.003
D.K. Buslov, N.A. Nikonenko, N.I. Sushko and R.G. Zhbankov, Spectrochim. Acta A Mol. Biomol. Spectrosc., 55, 229 (1998); https://doi.org/10.1016/S1386-1425(98)00289-3
P. Rajiv, S. Rajeshwari and R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 112, 384 (2013); https://doi.org/10.1016/j.saa.2013.04.072
E.P. Etape, J. Foba-Tendo, L.J. Ngolui, B.V. Namondo, F.C. Yollande and M.B.N. Nguimezong, J. Nanomater., 2018, 1 (2018); https://doi.org/10.1155/2018/9072325
A. Jayachandran, A. T.R and A.S. Nair, Biochem. Biophys. Rep., 26, 100995 (2021); https://doi.org/10.1016/j.bbrep.2021.100995
A. Campisi, R. Acquaviva, G. Raciti, A. Duro, M. Rizzo and N.A. Santagati, Foods, 8, 63 (2019); https://doi.org/10.3390/foods8020063
A.K. Tiwari, S. Jha, S.K. Tripathi, R. Shukla, R.R. Awasthi, A.K. Bhardwaj, A.K. Singh and A. Dikshit, Discov. Appl. Sci., 6, 399 (2024); https://doi.org/10.1007/s42452-024-06049-z
Y. Song, F. Yang, M. Ma, Y. Kang, A. Hui, Z. Quan and A. Wang, Lebensm. Wiss. Technol., 165, 113762 (2022); https://doi.org/10.1016/j.lwt.2022.113762