Copyright (c) 2025 Ari Hardianto, Diah Nur Oktavia, Zuhrotun Nafisah, Hersandy Dayu Kusuma, Fajriana Shafira Nurrusyda, Purwadi Purwadi, Indra Mawardi, Rani Nopriyanti, Adi Saputra Ismy, Dessy Amalia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Impact of Leaching Operational Factors on Nickel and Manganese Recovery from Black Masses of Spent Lithium-Ion and Nickel-Metal Hydride Batteries
Corresponding Author(s) : Ari Hardianto
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
Spent lithium-ion (LiB) and nickel-metal hydride (NiMH) batteries pose significant environmental concerns and a valuable resource for critical metals. This study employs a two-level fractional factorial design to analyze the impact of various leaching factors on nickel and manganese recovery from a mixture of spent LiB and NiMH batteries. Results indicate that the acid concentration and liquid-to-solid ratio are the most influential factors for nickel and manganese leaching. Scanning electron microscopy analysis confirms the morphological changes in the black mass, leading to increased porosity and reduced particle size, correlating with higher metal recovery. This study provides valuable insights for developing efficient and sustainable battery recycling processes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- International Energy Agency, Renewables 2023, Paris (2024); https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf
- International Energy Agency, Global EV Outlook 2024, IEA, Paris, (2024); https://iea.blob.core.windows.net/assets/a9e3544b-0b12-4e15-b407-65f5c8ce1b5f/GlobalEVOutlook2024.pdf
- S.S. Sharma and A. Manthiram, Energy Environ. Sci., 13, 4087 (2020); https://doi.org/10.1039/D0EE02511A
- B. Jiang, A. Adebayo, J. Jia, Y. Xing, S. Deng, L. Guo, Y. Liang and D. Zhang, J. Hazard. Mater., 362, 187 (2019); https://doi.org/10.1016/j.jhazmat.2018.08.060
- D.K. Gupta, A. Iyer, A. Mitra, S. Chatterjee and S. Murugan, 2024, preprint, https://doi.org/10.21203/rs.3.rs-3730110/v1
- A. Boyden, V.K. Soo and M. Doolan, Procedia CIRP, 48, 188 (2016); https://doi.org/10.1016/j.procir.2016.03.100
- D.H.P. Kang, M. Chen and O.A. Ogunseitan, Environ. Sci. Technol., 47, 5495 (2013); https://doi.org/10.1021/es400614y
- S. Srinivasan, S. Shanthakumar and B. Ashok, Energy Rep., 13, 789 (2025); https://doi.org/10.1016/j.egyr.2024.12.043
- F. Liu, C. Peng, A. Porvali, Z. Wang, B.P. Wilson and M. Lundström, ACS Sustain. Chem.& Eng., 7, 16103 (2019); https://doi.org/10.1021/acssuschemeng.9b02863
- S. Kursunoglu, N. Kursunoglu, S. Hussaini and M. Kaya, J. Clean. Prod., 283, 124659 (2021); https://doi.org/10.1016/j.jclepro.2020.124659
- A.-F. Yi, Z.-W. Zhu, Y.-H. Liu, J. Zhang, H. Su and T. Qi, Rare Met., 40, 1971 (2021); https://doi.org/10.1007/s12598-020-01503-4
- H. Chen, S. Gu, Y. Guo, X. Dai, L. Zeng, K. Wang, C. He, G. Dodbiba, Y. Wei and T. Fujita, Hydrometallurgy, 205, 105746 (2021); https://doi.org/10.1016/j.hydromet.2021.105746
- R. Yuliusman, R. Fajaryanto, A. Nurqomariah and Silvia, E3S Web Conf., 67, 03025 (2018); https://doi.org/10.1051/e3sconf/20186703025
- A.R.F. Carreira, A.F.M. Nogueira, I.L.D. Rocha, F. Sosa, A.M. Da Costa Lopes, H. Passos, N. Schaeffer and J.A.P. Coutinho, ChemSusChem, 17, e202301801 (2024); https://doi.org/10.1002/cssc.202301801
- L.-P. He, S.-Y. Sun, Y.-Y. Mu, X.-F. Song and J.-G. Yu, ACS Sustain. Chem. & Eng., 5, 714 (2017); https://doi.org/10.1021/acssuschemeng.6b02056
- D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Tempe, Arizona, USA, edn. 10 (2019).
- S. Ojanen, M. Lundström, A. Santasalo-Aarnio and R. Serna-Guerrero, Waste Manag., 76, 242 (2018); https://doi.org/10.1016/j.wasman.2018.03.045
- M. Abidin, M. Yusuf, W. Widayat, T. Subroto, N. Nurainy and A. Hardianto, Trends Sci., 21, 7142 (2023); https://doi.org/10.48048/tis.2024.7142
- J. Wen and M.S. Lee, J. Chem. Technol. Biotechnol., 98, 2841 (2023); https://doi.org/10.1002/jctb.7490
- Y. Wang, W. Qin and J. Han, Miner. Eng., 207, 108577 (2024); https://doi.org/10.1016/j.mineng.2024.108577
- M.A. Deyab, M.M. Alghamdi and A.A. El-Zahhar, Sci. Rep., 14, 1853 (2024); https://doi.org/10.1038/s41598-024-52281-3
- A.M.A.-A. Otron, T. Millogo, L.-H. Tran and J.-F. Blais, Environ. Technol., 45, 4156 (2024); https://doi.org/10.1080/09593330.2023.2243391
- I.B. Illés and T. Kékesi, Miner. Eng., 201, 108169 (2023); https://doi.org/10.1016/j.mineng.2023.108169
- X. Peng, L. Shi, T. Qu, Z. Yang, L. Lin, G. Xie and B. Xu, Separations, 10, 64 (2023); https://doi.org/10.3390/separations10020064
- A.R.F. Carreira, A. Nogueira, A.P.S. Crema, H. Passos, N. Schaeffer and J.A.P. Coutinho, Chem. Eng. J., 475, 146374 (2023); https://doi.org/10.1016/j.cej.2023.146374
- P.P.M. Ribeiro, I.D. dos Santos, R. Neumann, A. Fernandes and A.J.B. Dutra, Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci., 52, 1739 (2021); https://doi.org/10.1007/s11663-021-02141-6
- S. Ilhan and D. Akgün, J. Sustain. Metall., 7, 470 (2021); https://doi.org/10.1007/s40831-021-00351-5
References
International Energy Agency, Renewables 2023, Paris (2024); https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf
International Energy Agency, Global EV Outlook 2024, IEA, Paris, (2024); https://iea.blob.core.windows.net/assets/a9e3544b-0b12-4e15-b407-65f5c8ce1b5f/GlobalEVOutlook2024.pdf
S.S. Sharma and A. Manthiram, Energy Environ. Sci., 13, 4087 (2020); https://doi.org/10.1039/D0EE02511A
B. Jiang, A. Adebayo, J. Jia, Y. Xing, S. Deng, L. Guo, Y. Liang and D. Zhang, J. Hazard. Mater., 362, 187 (2019); https://doi.org/10.1016/j.jhazmat.2018.08.060
D.K. Gupta, A. Iyer, A. Mitra, S. Chatterjee and S. Murugan, 2024, preprint, https://doi.org/10.21203/rs.3.rs-3730110/v1
A. Boyden, V.K. Soo and M. Doolan, Procedia CIRP, 48, 188 (2016); https://doi.org/10.1016/j.procir.2016.03.100
D.H.P. Kang, M. Chen and O.A. Ogunseitan, Environ. Sci. Technol., 47, 5495 (2013); https://doi.org/10.1021/es400614y
S. Srinivasan, S. Shanthakumar and B. Ashok, Energy Rep., 13, 789 (2025); https://doi.org/10.1016/j.egyr.2024.12.043
F. Liu, C. Peng, A. Porvali, Z. Wang, B.P. Wilson and M. Lundström, ACS Sustain. Chem.& Eng., 7, 16103 (2019); https://doi.org/10.1021/acssuschemeng.9b02863
S. Kursunoglu, N. Kursunoglu, S. Hussaini and M. Kaya, J. Clean. Prod., 283, 124659 (2021); https://doi.org/10.1016/j.jclepro.2020.124659
A.-F. Yi, Z.-W. Zhu, Y.-H. Liu, J. Zhang, H. Su and T. Qi, Rare Met., 40, 1971 (2021); https://doi.org/10.1007/s12598-020-01503-4
H. Chen, S. Gu, Y. Guo, X. Dai, L. Zeng, K. Wang, C. He, G. Dodbiba, Y. Wei and T. Fujita, Hydrometallurgy, 205, 105746 (2021); https://doi.org/10.1016/j.hydromet.2021.105746
R. Yuliusman, R. Fajaryanto, A. Nurqomariah and Silvia, E3S Web Conf., 67, 03025 (2018); https://doi.org/10.1051/e3sconf/20186703025
A.R.F. Carreira, A.F.M. Nogueira, I.L.D. Rocha, F. Sosa, A.M. Da Costa Lopes, H. Passos, N. Schaeffer and J.A.P. Coutinho, ChemSusChem, 17, e202301801 (2024); https://doi.org/10.1002/cssc.202301801
L.-P. He, S.-Y. Sun, Y.-Y. Mu, X.-F. Song and J.-G. Yu, ACS Sustain. Chem. & Eng., 5, 714 (2017); https://doi.org/10.1021/acssuschemeng.6b02056
D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Tempe, Arizona, USA, edn. 10 (2019).
S. Ojanen, M. Lundström, A. Santasalo-Aarnio and R. Serna-Guerrero, Waste Manag., 76, 242 (2018); https://doi.org/10.1016/j.wasman.2018.03.045
M. Abidin, M. Yusuf, W. Widayat, T. Subroto, N. Nurainy and A. Hardianto, Trends Sci., 21, 7142 (2023); https://doi.org/10.48048/tis.2024.7142
J. Wen and M.S. Lee, J. Chem. Technol. Biotechnol., 98, 2841 (2023); https://doi.org/10.1002/jctb.7490
Y. Wang, W. Qin and J. Han, Miner. Eng., 207, 108577 (2024); https://doi.org/10.1016/j.mineng.2024.108577
M.A. Deyab, M.M. Alghamdi and A.A. El-Zahhar, Sci. Rep., 14, 1853 (2024); https://doi.org/10.1038/s41598-024-52281-3
A.M.A.-A. Otron, T. Millogo, L.-H. Tran and J.-F. Blais, Environ. Technol., 45, 4156 (2024); https://doi.org/10.1080/09593330.2023.2243391
I.B. Illés and T. Kékesi, Miner. Eng., 201, 108169 (2023); https://doi.org/10.1016/j.mineng.2023.108169
X. Peng, L. Shi, T. Qu, Z. Yang, L. Lin, G. Xie and B. Xu, Separations, 10, 64 (2023); https://doi.org/10.3390/separations10020064
A.R.F. Carreira, A. Nogueira, A.P.S. Crema, H. Passos, N. Schaeffer and J.A.P. Coutinho, Chem. Eng. J., 475, 146374 (2023); https://doi.org/10.1016/j.cej.2023.146374
P.P.M. Ribeiro, I.D. dos Santos, R. Neumann, A. Fernandes and A.J.B. Dutra, Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci., 52, 1739 (2021); https://doi.org/10.1007/s11663-021-02141-6
S. Ilhan and D. Akgün, J. Sustain. Metall., 7, 470 (2021); https://doi.org/10.1007/s40831-021-00351-5