Copyright (c) 2025 Arunapriya Lakkadi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Charge Transfer Complexation between 2,5-Dihydroxy-p-benzoquinone and 2-Amino Aniline; Spectral Characterization and DFT Analysis
Corresponding Author(s) : L. Arunapriya
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
A charge transfer (CT) complex was synthesized using electron donor 2-amino aniline (AA) and electron acceptor 2,5-dihydroxy benzoquinone (DHBQ) in an acetonitrile medium. The charge transfer complex stoichiometry is 1:1. The Benesi-Hildebrand equation was used to determine the molar absorptivity (εCT), association constant (KCT) and other physical constants. The synthesized solid CT-complex was analyzed by 1H NMR and FT-IR spectroscopic methods. DFT study of the CT complex (gas phase) at the basis set B3LYP/6-31++G also gave similar results of the experimental work. Mulliken atomic charges and reactive parameters of acceptor and donor recommend that AA is good electron donor and DHBQ is good electron acceptor so that form good highly stable charge transfer complex. Finally, good agreement between the experimental and theoretical computations was observed confirming that the basis set used is appropriate for the system under examination.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-Y. Zhang, L.-L. Wang and X.-Q. Zhu, ACS Phys. Chem Au, 3, 358 (2023); https://doi.org/10.1021/acsphyschemau.3c00001
- G.E. Milanovsky, A.A. Petrova, D.A. Cherepanov and A.Y. Semenov, Photosynth. Res., 133, 185 (2017); https://doi.org/10.1007/s11120-017-0366-y
- C. Balraj, A. Satheshkumar, K. Ganesh and K.P. Elango, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 114, 256 (2013); https://doi.org/10.1016/j.saa.2013.05.031
- S.H. Oh, B.G. Kim, S.J. Yun, M. Maheswara, K. Kim and J.Y. Do, Dyes Pigments, 85, 37 (2010); https://doi.org/10.1016/j.dyepig.2009.10.001
- J.E. Benedetti, A.D. Gonçalves, A.L.B. Formiga, M.-A. De Paoli, X. Li, J.R. Durrant and A.F. Nogueira, J. Power Sources, 195, 1246 (2010); https://doi.org/10.1016/j.jpowsour.2009.09.008
- M.H. Barary, M.H. Abdel-Hay, S.M. Sabry and S.T. Belal, J. Pharm. Biomed. Anal., 34, 221 (2004); https://doi.org/10.1016/j.japna.2003.08.007
- A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- L. Arunapriya, V. Srimai, N. Venkatesh, K. Jaeyoung, J. Joonkyung and T. Parthasarathy, J. Biomol. Struct. Dyn., 42, 2793 (2023); https://doi.org/10.1080/07391102.2023.2212785
- R.D. Dennington, T.A. Keith and J.M. Millam, GaussView 5.0.8, Gaussian (2008).
- H.M. Elqudaby, G.G. Mohamed and G.M.G. El-Din, Spectrochim. Acta A Mol. Biomol. Spectrosc., 129, 84 (2014); https://doi.org/10.1016/j.saa.2014.02.110
- D.A. Skooge, Principle of Instrumental Analysis, Sunder College Publisher, New York, edn. 3 (1985).
- H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
- W.B. Person, J. Am. Chem. Soc., 84, 536 (1962); https://doi.org/10.1021/ja00863a007
- A.A. Ibrahim, Afr. J. Pure Appl. Chem, 5, 507 (2011).
- A.M.A. Adam, M. Salman, T. Sharshar and M.S. Refat, Int. J. Electrochem. Sci., 8, 1274 (2013); https://doi.org/10.1016/S1452-3981(23)14097-1
- H. McConnell, J.S. Ham and J.R. Platt, J. Chem. Phys., 21, 66 (1953); https://doi.org/10.1063/1.1698626
- G. Briegleb, Elektronen-Donator-Acceptor-Komplexe, Springer-Verlog, Berlin (1961).
- K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, J. Solution Chem., 39, 1264 (2010); https://doi.org/10.1007/s10953-010-9591-0
- G.A. Saleh, H.F. Askal, M.F. Radwan and M.A. Omar, Talanta, 54, 1205 (2001); https://doi.org/10.1016/S0039-9140(01)00409-X
- T. Parthasarathy, K. Nageshwar Rao, B. Sethuram and T.N. Rao, J. Macromol. Sci Chem. A., 23, 955 (1986); https://doi.org/10.1080/00222338608081103
- A. Lakkadi, N. Baindla, S. Vuppala and P. Tigulla, J. Phys. Org. Chem., 30, e3700 (2017); https://doi.org/10.1002/poc.3700
- A. Lakkadi, N. Baindla and P. Tigulla, J. Solution Chem., 46, 2171 (2017); https://doi.org/10.1007/s10953-017-0685-9
- K.M. Al-Ahmary, S.M. Soliman, R.A. Mekheimer, M.M. Habeeb and M.S. Alenezi, J. Mol. Liq., 231, 602 (2017); https://doi.org/10.1016/j.molliq.2017.02.038
- V. Choudhary, A. Bhatt, D. Dash and N. Sharma, J. Comput. Chem., 40, 2354 (2019); https://doi.org/10.1002/jcc.26012
References
J.-Y. Zhang, L.-L. Wang and X.-Q. Zhu, ACS Phys. Chem Au, 3, 358 (2023); https://doi.org/10.1021/acsphyschemau.3c00001
G.E. Milanovsky, A.A. Petrova, D.A. Cherepanov and A.Y. Semenov, Photosynth. Res., 133, 185 (2017); https://doi.org/10.1007/s11120-017-0366-y
C. Balraj, A. Satheshkumar, K. Ganesh and K.P. Elango, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 114, 256 (2013); https://doi.org/10.1016/j.saa.2013.05.031
S.H. Oh, B.G. Kim, S.J. Yun, M. Maheswara, K. Kim and J.Y. Do, Dyes Pigments, 85, 37 (2010); https://doi.org/10.1016/j.dyepig.2009.10.001
J.E. Benedetti, A.D. Gonçalves, A.L.B. Formiga, M.-A. De Paoli, X. Li, J.R. Durrant and A.F. Nogueira, J. Power Sources, 195, 1246 (2010); https://doi.org/10.1016/j.jpowsour.2009.09.008
M.H. Barary, M.H. Abdel-Hay, S.M. Sabry and S.T. Belal, J. Pharm. Biomed. Anal., 34, 221 (2004); https://doi.org/10.1016/j.japna.2003.08.007
A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
L. Arunapriya, V. Srimai, N. Venkatesh, K. Jaeyoung, J. Joonkyung and T. Parthasarathy, J. Biomol. Struct. Dyn., 42, 2793 (2023); https://doi.org/10.1080/07391102.2023.2212785
R.D. Dennington, T.A. Keith and J.M. Millam, GaussView 5.0.8, Gaussian (2008).
H.M. Elqudaby, G.G. Mohamed and G.M.G. El-Din, Spectrochim. Acta A Mol. Biomol. Spectrosc., 129, 84 (2014); https://doi.org/10.1016/j.saa.2014.02.110
D.A. Skooge, Principle of Instrumental Analysis, Sunder College Publisher, New York, edn. 3 (1985).
H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949); https://doi.org/10.1021/ja01176a030
W.B. Person, J. Am. Chem. Soc., 84, 536 (1962); https://doi.org/10.1021/ja00863a007
A.A. Ibrahim, Afr. J. Pure Appl. Chem, 5, 507 (2011).
A.M.A. Adam, M. Salman, T. Sharshar and M.S. Refat, Int. J. Electrochem. Sci., 8, 1274 (2013); https://doi.org/10.1016/S1452-3981(23)14097-1
H. McConnell, J.S. Ham and J.R. Platt, J. Chem. Phys., 21, 66 (1953); https://doi.org/10.1063/1.1698626
G. Briegleb, Elektronen-Donator-Acceptor-Komplexe, Springer-Verlog, Berlin (1961).
K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, J. Solution Chem., 39, 1264 (2010); https://doi.org/10.1007/s10953-010-9591-0
G.A. Saleh, H.F. Askal, M.F. Radwan and M.A. Omar, Talanta, 54, 1205 (2001); https://doi.org/10.1016/S0039-9140(01)00409-X
T. Parthasarathy, K. Nageshwar Rao, B. Sethuram and T.N. Rao, J. Macromol. Sci Chem. A., 23, 955 (1986); https://doi.org/10.1080/00222338608081103
A. Lakkadi, N. Baindla, S. Vuppala and P. Tigulla, J. Phys. Org. Chem., 30, e3700 (2017); https://doi.org/10.1002/poc.3700
A. Lakkadi, N. Baindla and P. Tigulla, J. Solution Chem., 46, 2171 (2017); https://doi.org/10.1007/s10953-017-0685-9
K.M. Al-Ahmary, S.M. Soliman, R.A. Mekheimer, M.M. Habeeb and M.S. Alenezi, J. Mol. Liq., 231, 602 (2017); https://doi.org/10.1016/j.molliq.2017.02.038
V. Choudhary, A. Bhatt, D. Dash and N. Sharma, J. Comput. Chem., 40, 2354 (2019); https://doi.org/10.1002/jcc.26012