Copyright (c) 2024 Akansha Tyagi, Anuj Kumar, Navneeta Kohli, Varsha Rani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microscopic Analysis of Cathinone Derivative 4-Fluoromethcathinone Hydrochloride using Density Functional Theory and its Mechanism of Interaction with Biogenic Amine Neurotransmitter
Corresponding Author(s) : Anuj Kumar
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
Synthetic cathinones, a new psychoactive substance more commonly known as bath salts, are designer drugs that pose a considerable challenge for prevention and treatment. A large number of such cathinone derivatives have been synthesized recently and the market is flooded with such synthetic psychoactive cathinone derivatives. Considering the possibility for misuse and adverse impacts on human health, it is crucial to collect analytical data on the newly synthesized cathinone derivatives available in the market. Therefore, it is essential to understand the most accurate identification of these substances and to establish a more efficacious therapy mechanism. Herein, a cathinone derivative 4-fluoromethcathinone hydrochloride (FMPHC) has been investigated using density functional theory (DFT). Systematic theoretical analysis for the optimized geometry, FT-Raman, FT-IR spectra and molecular reactivity descriptors such as HOMO-LUMO and molecular electrostatic potential (MEP) of this cathinone derivative is reported. The intra- and inter-molecular interactions of FMPHC crystal were analyzed using NBO analysis and Hirshfeld surface analysis, respectively. In silico molecular docking between the FMPHC ligand and a biogenic amine neurotransmitter, the norepinephrine transporter (hNET) responsible for alertness, arousal, and pain sensation is conducted to understand the mechanism of interaction of the norepinephrine transporter (hNET) with FMPHC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Baumann, E. Solis Jr., L.R. Watterson, J.A. Marusich, W.E. Fantegrossi and J.L. Wiley, J. Neurosci., 34, 15150 (2014); https://doi.org/10.1523/JNEUROSCI.3223-14.2014
- J.P. Kelly, Drug Test. Anal., 3, 439 (2011); https://doi.org/10.1002/dta.313
- A. Al-Motarreb, K. Baker and K.J. Broadley, Phytother. Res., 16, 403 (2002); https://doi.org/10.1002/ptr.1106
- T.A. Dal Cason, R. Young and R.A. Glennon, Pharmacol. Biochem. Behav., 58, 1109 (2011); https://doi.org/10.1016/S0091-3057(97)00323-7
- L. Poyatos, A. Torres, E. Papaseit, C. Pérez-Mañá, M. Núñez-Montero, O. Hladun, G. de la Rosa, M. Torrens, D. Fuster, R. Muga and M. Farré, J. Clin. Med., 11, 1004 (2022); https://doi.org/10.3390/jcm11041004
- A.S. Kristensen, J. Andersen, T.N. Jørgensen, L. Sørensen, J. Eriksen, C.J. Loland, K. Strømgaard and U. Gether, Pharmacol. Rev., 63, 585 (2011); https://doi.org/10.1124/pr.108.000869
- G.E. Torres, R.R. Gainetdinov and M.G. Caron, Nat. Rev. Neurosci., 4, 13 (2003); https://doi.org/10.1038/nrn1008
- T. Pacholczyk, R.D. Blakely and S.G. Amara, Nature, 350, 350 (1991); https://doi.org/10.1038/350350a0
- R.A. Sansone and L.A. Sansone, Psychiatry, 6, 19 (2009).
- Synthetic Cathinones, Drug Facts Report of National Institute on Drug Abuse; National Institutes of Health, U.S. Department of Health and Human Services (2020).
- M. Rojkiewicz, P. Kus, J. Kusz and M. Ksiazek, Forensic Toxicol., 36, 141 (2018); https://doi.org/10.1007/s11419-017-0393-6
- https://www.euda.europa.eu/publications/drug-profiles/synthetic-cathinones_en
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb and J.R. Cheeseman, Gaussian 09, C3 Revision B.01, Gaussian, Inc, Wallingford CT (2010).
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- R. Dennington, T. Keith and J. Milam, GaussView, Semichem Inc., Shawnee Mission KS Version 5 (2009).
- J.M.L. Martin and C.V. Alsenoy, Gar2ped, University of Antwerp (1995).
- P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979); https://doi.org/10.1021/ja00504a009
- M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, CrystalExplorer 17.5. The University of Western Australia (2017).
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- W.L. DeLano, The PyMOL Molecular Graphics System, Schrödinger LLC (2002).
- D. Studio, 4.5 Guide, San Diego, CA: Accelrys Inc., (2009); http://www.accelrys.com
- D.E. Hibbs, J. Overgaard, J.A. Platts, M.P. Waller and M.B. Hursthouse, J. Phys. Chem. B, 108, 3663 (2004); https://doi.org/10.1021/jp037700l
- S. Gunasekaran, R.A. Balaji, S. Kumeresan, G. Anand and S. Srinivasan, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008).
- T.A. Yousef, G.M. Abu El-Reash and R.M. El Morshedy, Polyhedron, 45, 71 (2012); https://doi.org/10.1016/j.poly.2012.07.041
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Willey & Sons (2004).
- V.K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58A, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
- C. Wu, W. Xie, L. Li, W. Li, J. Wang and T. Sun, J. Mol. Struct., 1175, 638 (2019); https://doi.org/10.1016/j.molstruc.2018.08.035
- M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
- Y.F. Baba, Y. Sert, Y.K. Rodi, S. Hayani, J.T. Mague, D. Prim, J. Marrot, F.O. Chahdi, N.K. Sebbar and E.M. Essassi, J. Mol. Struct., 1188, 255 (2019); https://doi.org/10.1016/j.molstruc.2019.03.103
- A. Schlessinger, E. Geier, H. Fan, J.J. Irwin, B.K. Shoichet, K.M. Giacomini and A. Sali, Proc. Natl. Acad. Sci. USA, 108, 15810 (2011); https://doi.org/10.1073/pnas.1106030108
References
M.H. Baumann, E. Solis Jr., L.R. Watterson, J.A. Marusich, W.E. Fantegrossi and J.L. Wiley, J. Neurosci., 34, 15150 (2014); https://doi.org/10.1523/JNEUROSCI.3223-14.2014
J.P. Kelly, Drug Test. Anal., 3, 439 (2011); https://doi.org/10.1002/dta.313
A. Al-Motarreb, K. Baker and K.J. Broadley, Phytother. Res., 16, 403 (2002); https://doi.org/10.1002/ptr.1106
T.A. Dal Cason, R. Young and R.A. Glennon, Pharmacol. Biochem. Behav., 58, 1109 (2011); https://doi.org/10.1016/S0091-3057(97)00323-7
L. Poyatos, A. Torres, E. Papaseit, C. Pérez-Mañá, M. Núñez-Montero, O. Hladun, G. de la Rosa, M. Torrens, D. Fuster, R. Muga and M. Farré, J. Clin. Med., 11, 1004 (2022); https://doi.org/10.3390/jcm11041004
A.S. Kristensen, J. Andersen, T.N. Jørgensen, L. Sørensen, J. Eriksen, C.J. Loland, K. Strømgaard and U. Gether, Pharmacol. Rev., 63, 585 (2011); https://doi.org/10.1124/pr.108.000869
G.E. Torres, R.R. Gainetdinov and M.G. Caron, Nat. Rev. Neurosci., 4, 13 (2003); https://doi.org/10.1038/nrn1008
T. Pacholczyk, R.D. Blakely and S.G. Amara, Nature, 350, 350 (1991); https://doi.org/10.1038/350350a0
R.A. Sansone and L.A. Sansone, Psychiatry, 6, 19 (2009).
Synthetic Cathinones, Drug Facts Report of National Institute on Drug Abuse; National Institutes of Health, U.S. Department of Health and Human Services (2020).
M. Rojkiewicz, P. Kus, J. Kusz and M. Ksiazek, Forensic Toxicol., 36, 141 (2018); https://doi.org/10.1007/s11419-017-0393-6
https://www.euda.europa.eu/publications/drug-profiles/synthetic-cathinones_en
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb and J.R. Cheeseman, Gaussian 09, C3 Revision B.01, Gaussian, Inc, Wallingford CT (2010).
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
R. Dennington, T. Keith and J. Milam, GaussView, Semichem Inc., Shawnee Mission KS Version 5 (2009).
J.M.L. Martin and C.V. Alsenoy, Gar2ped, University of Antwerp (1995).
P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979); https://doi.org/10.1021/ja00504a009
M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, CrystalExplorer 17.5. The University of Western Australia (2017).
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
W.L. DeLano, The PyMOL Molecular Graphics System, Schrödinger LLC (2002).
D. Studio, 4.5 Guide, San Diego, CA: Accelrys Inc., (2009); http://www.accelrys.com
D.E. Hibbs, J. Overgaard, J.A. Platts, M.P. Waller and M.B. Hursthouse, J. Phys. Chem. B, 108, 3663 (2004); https://doi.org/10.1021/jp037700l
S. Gunasekaran, R.A. Balaji, S. Kumeresan, G. Anand and S. Srinivasan, Can. J. Anal. Sci. Spectrosc., 53, 149 (2008).
T.A. Yousef, G.M. Abu El-Reash and R.M. El Morshedy, Polyhedron, 45, 71 (2012); https://doi.org/10.1016/j.poly.2012.07.041
B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Willey & Sons (2004).
V.K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58A, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
C. Wu, W. Xie, L. Li, W. Li, J. Wang and T. Sun, J. Mol. Struct., 1175, 638 (2019); https://doi.org/10.1016/j.molstruc.2018.08.035
M.A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
Y.F. Baba, Y. Sert, Y.K. Rodi, S. Hayani, J.T. Mague, D. Prim, J. Marrot, F.O. Chahdi, N.K. Sebbar and E.M. Essassi, J. Mol. Struct., 1188, 255 (2019); https://doi.org/10.1016/j.molstruc.2019.03.103
A. Schlessinger, E. Geier, H. Fan, J.J. Irwin, B.K. Shoichet, K.M. Giacomini and A. Sali, Proc. Natl. Acad. Sci. USA, 108, 15810 (2011); https://doi.org/10.1073/pnas.1106030108