Copyright (c) 2024 HENDRAWAN HENDRAWAN, Mr., Prof., Ms., Ms.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Medium Effect on Swelling and Sorption Behaviour of Sodium Chloride from-and-into Poly(vinyl alcohol)-Glutaraldehyde Hydrogel at Room Temperature
Corresponding Author(s) : Hendrawan Hendrawan
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
This work aims to study the swelling behaviour of poly(vinyl alcohol)-glutaraldehyde (PVA/GA) hydrogel under various acidity and NaCl concentration of medium and release behaviour of NaCl from PVA/GA hydrogels. The hydrogels were characterized by FT-IR and SEM techniques. Repeated washing was necessary to produce a residual-free PVA/GA hydrogel. The FTIR spectra demonstrated that the incorporation of NaCl into the PVA/GA hydrogel did not result in specific interactions. The swelling profile of PVA/GA at the different pH medium was due to protonation and charge screening effects, while its swelling behaviour at various salt concentrations in medium was associated with the charge screening and osmotic pressure effects. The kinetic profile of NaCl absorption and desorption from-and-into PVA/GA was presumed to be controlled by the physical properties of hydrogel such as porosity, cavity and characteristic of the hydrodynamic radii of NaCl.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.J.M. Maathuis, I. Ahmad and J. Patishtan, Front. Plant Sci., 5, 1 (2014); https://doi.org/10.3389/fpls.2014.00467
- A.M.S. Abdul Qados, J. Saudi Soc. Agric. Sci., 1, 7 (2011); https://doi.org/10.1016/j.jssas.2010.06.002
- A. Petjukeviès, A. Batjuka and N. Škute, Biologija, 61, 34 (2015); https://doi.org/10.6001/biologija.v61i1.3109
- P.F. Brownell and C.J. Crossland, Plant Physiol., 49, 794 (1972); https://doi.org/10.1104/pp.49.5.794
- L. Hongqiao, A. Suyama, N. Mitani-Ueno, R. Hell and A. Maruyama-Nakashita, Plants, 10, 2138 (2021); https://doi.org/10.3390/plants10102138
- A. Shaviv, Controlled Release Fertilizers, In: IFA International Work-shop on Enhanced-Efficiency Fertilizers; 28-30 June 2005, Frankfurt, Germany; International Fertilizer Industry Association (2005).
- M.E. Trenkel, Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, Paris, France: International Fertilizer Industry Association (2010).
- K. Lubkowski, Pol. J. Chem. Technol., 18, 72 (2016); https://doi.org/10.1515/pjct-2016-0012
- M. Rajan, S. Shahena, V. Chandran and L. Mathew, in eds.: F.B. Lawu, T. Volova, S. Thomas and K.R. Rakhimol, Improving Fertilizer Use Efficiency Controlled Release of Fertilizers Concept, Reality and Mechanism, In: Controlled Release Fertilizers for Sustainable Agriculture, Academic Press, pp. 41-56 (2021).
- W.A. Laftah, S. Hashim and A.N. Ibrahim, Polym. Plast. Technol. Eng., 50, 1475 (2011); https://doi.org/10.1080/03602559.2011.593082
- S.I. Sempeho, H.T. Kim, E. Mubofu and A. Hilonga, Adv. Chem., 2014, 363071 (2014); https://doi.org/10.1155/2014/363071
- M.F. Akhtar, M. Hanif and N.M. Ranjha, Saudi Pharm. J., 24, 554 (2016); https://doi.org/10.1016/j.jsps.2015.03.022
- M. Vigata, C. Meinert, D.W. Hutmacher and N. Bock, Pharmaceutics, 12, 1188 (2020); https://doi.org/10.3390/pharmaceutics12121188
- F. Xu, H. Padhy, M. Al-Dossary, G. Zhang, A.R. Behzad, U. Stingl and A. Rothenberger, J. Mater. Chem. B Mater. Biol. Med., 2, 6406 (2014); https://doi.org/10.1039/C4TB00611A
- H. Hendrawan, F. Khoerunnisa, Y. Sonjaya and N. Chotimah, J. Environ. Chem. Eng., 4, 4863 (2016); https://doi.org/10.1016/j.jece.2016.03.043
- H. Hendrawan, H.A. Aziz, N. Haryati and F. Khoerunnisa, Chemistry-Open, 12, e202200239 (2023); https://doi.org/10.1002/open.202200239
- E.M. Ahmed, J. Adv. Res., 6, 105 (2015); https://doi.org/10.1016/j.jare.2013.07.006
- V.N. Gupta and H.G. Shivakumar, Daru, 18, 200 (2010).
- H. Park, K. Park and D. Kim, Biomed. Mater. Res., 76A, 144 (2006); https://doi.org/10.1002/jbm.a.30533
- P. Sriamornsak, K. Burapapadh, S. Puttipipatkhachorn and J. Nunthanid, Silpakorn Univ. Sci. Technol., 2, 37 (2008); https://doi.org/10.14456/sustj.2008.4
- H. Saito, T. Taguchi, H. Aoki, S. Murabayashi, Y. Mitamura, J. Tanaka and T. Tateishi, Acta Biomater., 3, 89 (2007); https://doi.org/10.1016/j.actbio.2006.08.003
- M. Sabzi, M.J. Afshari, M. Babaahmadi and N. Shafagh, Colloids Surf. B Biointerfaces, 188, 110757 (2020); https://doi.org/10.1016/j.colsurfb.2019.110757
- F. Khoerunnisa, N. Nurhayati, R.N. Hiqmah, H. Hendrawan, F. Dara, H.A. Aziz, Y. Sonjaya and M. Nasir, AIP Conf. Proc., 2349, 020025 (2021); https://doi.org/10.1063/5.0051817
- S.K. Bajpai, M. Bajpai and L. Sharma, J. Macromol. Sci. Part A Pure Appl. Chem., 43, 507 (2006); https://doi.org/10.1080/10601320600575249
- G. Paradossi, F. Cavalieri, E. Chiessi, C. Spagnoli and M.K. Cowman, J. Mater. Sci. Mater. Med., 14, 687 (2003); https://doi.org/10.1023/A:1024907615244
- H.S. Mansur, C.M. Sadahira, A.N. Souza and A.A.P. Mansur, Mater. Sci. Eng. C, 28, 539 (2008); https://doi.org/10.1016/j.msec.2007.10.088
- P. Monsan, G. Puzo and H. Mazarguil, Biochimie, 57, 1281 (1976); https://doi.org/10.1016/S0300-9084(76)80540-8
- J.A. Kiernan, Micros. Today, 8, 8 (2000); https://doi.org/10.1017/S1551929500057060
- A. Olad, H. Gharekhani, A. Mirmohseni and A. Bybordi, Polym. Bull., 74, 3353 (2017); https://doi.org/10.1007/s00289-016-1899-5
- H.C. van der Mei, J.M. Meinders and H.J. Busscher, Microbiology, 140, 3413 (1994); https://doi.org/10.1099/13500872-140-12-3413
- D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole Cengage Learning, edn. 3 (2001).
- M.R. Guilherme, F.A. Aouada, A.R. Fajardo, A.F. Martins, A.T. Paulino, M.F.T. Davi, A.F. Rubira and E.C. Muniz, Eur. Polym. J., 72, 365 (2015); https://doi.org/10.1016/j.eurpolymj.2015.04.017
- T. Mehrotra, M.N. Zaman, B.B. Prasad, A. Shukla, S. Aggarwal and R. Singh, Environ. Sci. Pollut. Res. Int., 27, 9167 (2020); https://doi.org/10.1007/s11356-019-07296-z
- Y. Zhao, H. Su, L. Fang and T. Tan, Polymer, 46, 5368 (2005); https://doi.org/10.1016/j.polymer.2005.04.015
- Y. Bao, J. Ma and N. Li, Carbohydr. Polym., 84, 76 (2011); https://doi.org/10.1016/j.carbpol.2010.10.061
- H. Hosseinzadeh, Curr. Chem Lett., 2, 153 (2013); https://doi.org/10.5267/j.ccl.2013.05.001
- M.L. Tsaih and R.H. Chen, J. Appl. Polym. Sci., 73, 2041 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990906)73:10<2041:: AID-APP22>3.0.CO;2-T
- J.L. Anderson, F. Rauh and A. Morales, J. Phys. Chem., 82, 608 (1978); https://doi.org/10.1021/j100494a022
References
F.J.M. Maathuis, I. Ahmad and J. Patishtan, Front. Plant Sci., 5, 1 (2014); https://doi.org/10.3389/fpls.2014.00467
A.M.S. Abdul Qados, J. Saudi Soc. Agric. Sci., 1, 7 (2011); https://doi.org/10.1016/j.jssas.2010.06.002
A. Petjukeviès, A. Batjuka and N. Škute, Biologija, 61, 34 (2015); https://doi.org/10.6001/biologija.v61i1.3109
P.F. Brownell and C.J. Crossland, Plant Physiol., 49, 794 (1972); https://doi.org/10.1104/pp.49.5.794
L. Hongqiao, A. Suyama, N. Mitani-Ueno, R. Hell and A. Maruyama-Nakashita, Plants, 10, 2138 (2021); https://doi.org/10.3390/plants10102138
A. Shaviv, Controlled Release Fertilizers, In: IFA International Work-shop on Enhanced-Efficiency Fertilizers; 28-30 June 2005, Frankfurt, Germany; International Fertilizer Industry Association (2005).
M.E. Trenkel, Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, Paris, France: International Fertilizer Industry Association (2010).
K. Lubkowski, Pol. J. Chem. Technol., 18, 72 (2016); https://doi.org/10.1515/pjct-2016-0012
M. Rajan, S. Shahena, V. Chandran and L. Mathew, in eds.: F.B. Lawu, T. Volova, S. Thomas and K.R. Rakhimol, Improving Fertilizer Use Efficiency Controlled Release of Fertilizers Concept, Reality and Mechanism, In: Controlled Release Fertilizers for Sustainable Agriculture, Academic Press, pp. 41-56 (2021).
W.A. Laftah, S. Hashim and A.N. Ibrahim, Polym. Plast. Technol. Eng., 50, 1475 (2011); https://doi.org/10.1080/03602559.2011.593082
S.I. Sempeho, H.T. Kim, E. Mubofu and A. Hilonga, Adv. Chem., 2014, 363071 (2014); https://doi.org/10.1155/2014/363071
M.F. Akhtar, M. Hanif and N.M. Ranjha, Saudi Pharm. J., 24, 554 (2016); https://doi.org/10.1016/j.jsps.2015.03.022
M. Vigata, C. Meinert, D.W. Hutmacher and N. Bock, Pharmaceutics, 12, 1188 (2020); https://doi.org/10.3390/pharmaceutics12121188
F. Xu, H. Padhy, M. Al-Dossary, G. Zhang, A.R. Behzad, U. Stingl and A. Rothenberger, J. Mater. Chem. B Mater. Biol. Med., 2, 6406 (2014); https://doi.org/10.1039/C4TB00611A
H. Hendrawan, F. Khoerunnisa, Y. Sonjaya and N. Chotimah, J. Environ. Chem. Eng., 4, 4863 (2016); https://doi.org/10.1016/j.jece.2016.03.043
H. Hendrawan, H.A. Aziz, N. Haryati and F. Khoerunnisa, Chemistry-Open, 12, e202200239 (2023); https://doi.org/10.1002/open.202200239
E.M. Ahmed, J. Adv. Res., 6, 105 (2015); https://doi.org/10.1016/j.jare.2013.07.006
V.N. Gupta and H.G. Shivakumar, Daru, 18, 200 (2010).
H. Park, K. Park and D. Kim, Biomed. Mater. Res., 76A, 144 (2006); https://doi.org/10.1002/jbm.a.30533
P. Sriamornsak, K. Burapapadh, S. Puttipipatkhachorn and J. Nunthanid, Silpakorn Univ. Sci. Technol., 2, 37 (2008); https://doi.org/10.14456/sustj.2008.4
H. Saito, T. Taguchi, H. Aoki, S. Murabayashi, Y. Mitamura, J. Tanaka and T. Tateishi, Acta Biomater., 3, 89 (2007); https://doi.org/10.1016/j.actbio.2006.08.003
M. Sabzi, M.J. Afshari, M. Babaahmadi and N. Shafagh, Colloids Surf. B Biointerfaces, 188, 110757 (2020); https://doi.org/10.1016/j.colsurfb.2019.110757
F. Khoerunnisa, N. Nurhayati, R.N. Hiqmah, H. Hendrawan, F. Dara, H.A. Aziz, Y. Sonjaya and M. Nasir, AIP Conf. Proc., 2349, 020025 (2021); https://doi.org/10.1063/5.0051817
S.K. Bajpai, M. Bajpai and L. Sharma, J. Macromol. Sci. Part A Pure Appl. Chem., 43, 507 (2006); https://doi.org/10.1080/10601320600575249
G. Paradossi, F. Cavalieri, E. Chiessi, C. Spagnoli and M.K. Cowman, J. Mater. Sci. Mater. Med., 14, 687 (2003); https://doi.org/10.1023/A:1024907615244
H.S. Mansur, C.M. Sadahira, A.N. Souza and A.A.P. Mansur, Mater. Sci. Eng. C, 28, 539 (2008); https://doi.org/10.1016/j.msec.2007.10.088
P. Monsan, G. Puzo and H. Mazarguil, Biochimie, 57, 1281 (1976); https://doi.org/10.1016/S0300-9084(76)80540-8
J.A. Kiernan, Micros. Today, 8, 8 (2000); https://doi.org/10.1017/S1551929500057060
A. Olad, H. Gharekhani, A. Mirmohseni and A. Bybordi, Polym. Bull., 74, 3353 (2017); https://doi.org/10.1007/s00289-016-1899-5
H.C. van der Mei, J.M. Meinders and H.J. Busscher, Microbiology, 140, 3413 (1994); https://doi.org/10.1099/13500872-140-12-3413
D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole Cengage Learning, edn. 3 (2001).
M.R. Guilherme, F.A. Aouada, A.R. Fajardo, A.F. Martins, A.T. Paulino, M.F.T. Davi, A.F. Rubira and E.C. Muniz, Eur. Polym. J., 72, 365 (2015); https://doi.org/10.1016/j.eurpolymj.2015.04.017
T. Mehrotra, M.N. Zaman, B.B. Prasad, A. Shukla, S. Aggarwal and R. Singh, Environ. Sci. Pollut. Res. Int., 27, 9167 (2020); https://doi.org/10.1007/s11356-019-07296-z
Y. Zhao, H. Su, L. Fang and T. Tan, Polymer, 46, 5368 (2005); https://doi.org/10.1016/j.polymer.2005.04.015
Y. Bao, J. Ma and N. Li, Carbohydr. Polym., 84, 76 (2011); https://doi.org/10.1016/j.carbpol.2010.10.061
H. Hosseinzadeh, Curr. Chem Lett., 2, 153 (2013); https://doi.org/10.5267/j.ccl.2013.05.001
M.L. Tsaih and R.H. Chen, J. Appl. Polym. Sci., 73, 2041 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990906)73:10<2041:: AID-APP22>3.0.CO;2-T
J.L. Anderson, F. Rauh and A. Morales, J. Phys. Chem., 82, 608 (1978); https://doi.org/10.1021/j100494a022