Copyright (c) 2024 Asha A. Nawpute, S. V. Rajmane, Sudarshan D. Tapsale, K. M. Jadhav
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structure, Morphology, DC-Electrical and Dielectric Characteristics of Chromium(III) Substituted Co-Li Ferrite Nanoparticles
Corresponding Author(s) : Asha A. Nawpute
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
In this study, a detailed analysis of the lattice structure, micro-structural features, DC-electrical properties and dielectric characteristics of Cr3+-substituted cobalt-lithium-based ferrite oxide nanoparticles (CoLiFCr NPs) synthesized using a sol-gel method enhanced by synergistic sol-gel auto-combustion is presented. Citric acid monohydrate (C6H8O7·H2O) was utilized as a chelating agent, maintaining a metal nitrate to citrate ratio of 1:3. Substituting Cr3+ in Co-Li ferrite significantly alters its crystal structure, morphological, DC-electrical and dielectric characteristics. The X-ray diffraction (XRD) analysis confirmed the crystalline formation of Co0.8Li0.4Fe2-xCrxO4 nanoparticles (where x = 0.0, 0.2, 0.4 and 0.6); exhibiting the single-phase cubic structure characterized by a spinel configuration, falling under the space group Fd-3mO7h. The lattice constant a for CoLiFCr NPs (x = 0) was measured at 8.338 ± 0.002 Å, which decreased to 8.291 ± 0.002 Å upon Cr substitution (x = 0.6), as confirmed by Cohen’s analytical graphs. The crystallite size (D), determined using the Debye-Scherrer’s formula, ranged from around 18.9 to 29.74 nm. Peak broadening in CoLiFCr NPs was further examined through Williamson-Hall and size strain analyses. The FTIR spectra of CoLiFCr nanoparticles revealed the presence of metal-oxygen (M-O) bonds typical of spinel structures, featuring significant peaks at 443 cm–1 and 537 cm–1. High-resolution transmission electron microscopy (HR-TEM) images showed the single-crystal CoLiFCr NPs with nearly spherical morphologies. The study of optical properties was conducted using UV-visible spectroscopy. The nanoparticles with x = 0.2 displayed high ε' values at 50 Hz, indicating strong polarization capabilities, while those with x = 0.6 exhibited a decrease possibly linked to structural changes affecting polarization. The DC resistivity of CoLiFCr nanoparticles was investigated to understand their electrical behaviour highlighting the influence of substitution of Cr3+ on conductivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Arcaro and J. Venturini, Modern Ferrites in Engineering: Synthesis, Processing and Cutting-Edge Applications, Springer International Publishing (2021).
- S. Dabagh, S.A. Haris and Y.N. Ertas, ACS Biomater. Sci. Eng., 9, 4138 (2023); https://doi.org/10.1021/acsbiomaterials.3c00255
- A.A. Nawpute, S.D. Tapsale, S.S. Gawali, S.P. More and K.M. Jadhav, J. Electron. Mater., 53, 2250 (2024); https://doi.org/10.1007/s11664-024-10971-8
- S. Panda, C.K. Biswas and S. Paul, Ceram. Int., 47, 28122 (2021); https://doi.org/10.1016/j.ceramint.2021.07.100
- R. Yadwade, S. Kirtiwar and B. Ankamwar, J. Nanosci. Nanotechnol., 21, 5812 (2021); https://doi.org/10.1166/jnn.2021.19285
- L. Men, S. Feng, J. Zhang, X. Luo and Y. Zhou, Green Chem., 26, 1170 (2024); https://doi.org/10.1039/D3GC04088G
- K. Rajagopalan, B. Ramasubramanian, S. Velusamy, S. Ramakrishna, A.M. Kannan, M. Kaliyannan and S. Kulandaivel, Mater. Circular Econ., 4, 22 (2022); https://doi.org/10.1007/s42824-022-00064-4
- N.Q. Abro, N. Memon, M.S. Kalhoro, S.H. Laghari and Z. Ali, in eds.: A.K. Bhardwaj, A.L. Srivastav, K. Dwivedi and M. Sillanpää, Funda-mental Scope of Nanomaterial Synthesis from Wastes, In: Green and Sustainable Approaches using Wastes for the Production of Multi-functional Nanomaterials, Elsevier, Chap. 20, pp. 289-304 (2024).
- A. E. Danks, S. R. Hall and Z Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E
- A. Mallah, F. Al-Thuwayb, M. Khitouni, A. Alsawi, J.J. Suñol, J.M. Greneche and M.M. Almoneef, Crystals, 13, 894 (2023); https://doi.org/10.3390/cryst13060894
- V. Subhiksha, M.K. Okla, P. Sivaranjani, M.A. Abdel-Maksoud, I.A. Saleh, H.A. Abu-Harirah and S.S. Khan, Chemosphere, 342, 140181 (2023); https://doi.org/10.1016/j.chemosphere.2023.140181
- S. Sarmah, D. Maji, S. Ravi and T. Bora, J. Alloys Compd., 960, 170589 (2023); https://doi.org/10.1016/j.jallcom.2023.170589
- R. Vishwaroop and S.N. Mathad, Sci. Sinter., 52, 349 (2020); https://doi.org/10.2298/SOS2003349V
- Z. Li, J. Dai, C. Cheng, Z. Suo and W. qing, Mater. Res. Express, 7, 086102 (2020); https://doi.org/10.1088/2053-1591/abae26
- M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas and N. Sharmin, J. Alloys Compd., 895, 162694 (2022); https://doi.org/10.1016/j.jallcom.2021.162694
- F. De Boer, J. Van Santen and E. Verwey, J. Chem. Phys., 18, 1032 (1950); https://doi.org/10.1063/1.1747852
- S. Jiao, R. Pang, S. Wang, H. Wu, T. Tan, S. Zhang, L. Jiang, D. Li, C. Li and H. Zhang, Mater. Res. Bull., 149, 111710 (2022); https://doi.org/10.1016/j.materresbull.2021.111710
- M. Doumeng, L. Makhlouf, F. Berthet, O. Marsan, K. Delbé, J. Denape and F. Chabert, Polym. Test., 93, 106878 (2021); https://doi.org/10.1016/j.polymertesting.2020.106878
- C.G. Lima, A.J. Araújo, R.M. Silva, R.A. Raimundo, J.P. Grilo, G. Constantinescu, A.V. Kovalevsky and D.A. Macedo, J. Solid State Chem., 299, 122172 (2021); https://doi.org/10.1016/j.jssc.2021.122172
- P.S. Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan and G. Arivazhagan, Physica B, 595, (2020); https://doi.org/10.1016/j.physb.2020.412342
- S. Yousefi, B. Ghasemi and M.P. Nikolova, J. Cluster Sci., 33, 2197 (2022); https://doi.org/10.1007/s10876-021-02144-y
- S.A. Saafan, M.K. El-Nimr, M.M. Hussein and M. K.Omar, Appl. Phys., A Mater. Sci. Process., 127, 1 (2021); https://doi.org/10.1007/s00339-021-04947-2
- T. Zeeshan, S. Anjum, S. Waseem, F. Majid, M. Danish Ali and A. Aslam, Mater. Sci. Pol., 39, 139 (2021); https://doi.org/10.2478/msp-2021-0008
- F. Ahangaran and A.H. Navarchian, Adv. Colloid Interface Sci., 286, 102298 (2020); https://doi.org/10.1016/j.cis.2020.102298
- M.K. Singh and M.S. Mehata, Opt. Mater., 109, 110309 (2020); https://doi.org/10.1016/j.optmat.2020.110309
- Mubasher, M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, A. Rehman and K. Nadeem, Appl. Phys., A Mater. Sci. Process., 126, 334 (2020); https://doi.org/10.1007/s00339-020-03529-y
- M. Zahid, H.M. Khan, I. Sadiq, K. Ali, M. Mirza, M.U. Islam, S.A. Buzdar and Aziz-ur-Rehman, J. Mater. Sci.: Mater. Electr., 32, 9183 (2021); https://doi.org/10.1007/s10854-021-05584-4
- A. Raghavender and K.M. Jadhav, Bull. Mater. Sci., 32, 575 (2009); https://doi.org/10.1007/s12034-009-0087-8
- K. Chandramouli, B. Suryanarayana, P.V.S.K. Phanidhar Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T. Wegayehu Mammo and D. Parajuli, Results Phys., 24, 104117 (2021); https://doi.org/10.1016/j.rinp.2021.104117
- G.V. Priya, N. Murali, M. Raju, B. Krishan, D. Parajuli, P. Choppara, B.C. Sekhar, R. Verma, K.M. Batoo and P.V.L. Narayana, Appl. Phys. A, 128, 663 (2022); https://doi.org/10.1007/s00339-022-05809-1
References
S. Arcaro and J. Venturini, Modern Ferrites in Engineering: Synthesis, Processing and Cutting-Edge Applications, Springer International Publishing (2021).
S. Dabagh, S.A. Haris and Y.N. Ertas, ACS Biomater. Sci. Eng., 9, 4138 (2023); https://doi.org/10.1021/acsbiomaterials.3c00255
A.A. Nawpute, S.D. Tapsale, S.S. Gawali, S.P. More and K.M. Jadhav, J. Electron. Mater., 53, 2250 (2024); https://doi.org/10.1007/s11664-024-10971-8
S. Panda, C.K. Biswas and S. Paul, Ceram. Int., 47, 28122 (2021); https://doi.org/10.1016/j.ceramint.2021.07.100
R. Yadwade, S. Kirtiwar and B. Ankamwar, J. Nanosci. Nanotechnol., 21, 5812 (2021); https://doi.org/10.1166/jnn.2021.19285
L. Men, S. Feng, J. Zhang, X. Luo and Y. Zhou, Green Chem., 26, 1170 (2024); https://doi.org/10.1039/D3GC04088G
K. Rajagopalan, B. Ramasubramanian, S. Velusamy, S. Ramakrishna, A.M. Kannan, M. Kaliyannan and S. Kulandaivel, Mater. Circular Econ., 4, 22 (2022); https://doi.org/10.1007/s42824-022-00064-4
N.Q. Abro, N. Memon, M.S. Kalhoro, S.H. Laghari and Z. Ali, in eds.: A.K. Bhardwaj, A.L. Srivastav, K. Dwivedi and M. Sillanpää, Funda-mental Scope of Nanomaterial Synthesis from Wastes, In: Green and Sustainable Approaches using Wastes for the Production of Multi-functional Nanomaterials, Elsevier, Chap. 20, pp. 289-304 (2024).
A. E. Danks, S. R. Hall and Z Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E
A. Mallah, F. Al-Thuwayb, M. Khitouni, A. Alsawi, J.J. Suñol, J.M. Greneche and M.M. Almoneef, Crystals, 13, 894 (2023); https://doi.org/10.3390/cryst13060894
V. Subhiksha, M.K. Okla, P. Sivaranjani, M.A. Abdel-Maksoud, I.A. Saleh, H.A. Abu-Harirah and S.S. Khan, Chemosphere, 342, 140181 (2023); https://doi.org/10.1016/j.chemosphere.2023.140181
S. Sarmah, D. Maji, S. Ravi and T. Bora, J. Alloys Compd., 960, 170589 (2023); https://doi.org/10.1016/j.jallcom.2023.170589
R. Vishwaroop and S.N. Mathad, Sci. Sinter., 52, 349 (2020); https://doi.org/10.2298/SOS2003349V
Z. Li, J. Dai, C. Cheng, Z. Suo and W. qing, Mater. Res. Express, 7, 086102 (2020); https://doi.org/10.1088/2053-1591/abae26
M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas and N. Sharmin, J. Alloys Compd., 895, 162694 (2022); https://doi.org/10.1016/j.jallcom.2021.162694
F. De Boer, J. Van Santen and E. Verwey, J. Chem. Phys., 18, 1032 (1950); https://doi.org/10.1063/1.1747852
S. Jiao, R. Pang, S. Wang, H. Wu, T. Tan, S. Zhang, L. Jiang, D. Li, C. Li and H. Zhang, Mater. Res. Bull., 149, 111710 (2022); https://doi.org/10.1016/j.materresbull.2021.111710
M. Doumeng, L. Makhlouf, F. Berthet, O. Marsan, K. Delbé, J. Denape and F. Chabert, Polym. Test., 93, 106878 (2021); https://doi.org/10.1016/j.polymertesting.2020.106878
C.G. Lima, A.J. Araújo, R.M. Silva, R.A. Raimundo, J.P. Grilo, G. Constantinescu, A.V. Kovalevsky and D.A. Macedo, J. Solid State Chem., 299, 122172 (2021); https://doi.org/10.1016/j.jssc.2021.122172
P.S. Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan and G. Arivazhagan, Physica B, 595, (2020); https://doi.org/10.1016/j.physb.2020.412342
S. Yousefi, B. Ghasemi and M.P. Nikolova, J. Cluster Sci., 33, 2197 (2022); https://doi.org/10.1007/s10876-021-02144-y
S.A. Saafan, M.K. El-Nimr, M.M. Hussein and M. K.Omar, Appl. Phys., A Mater. Sci. Process., 127, 1 (2021); https://doi.org/10.1007/s00339-021-04947-2
T. Zeeshan, S. Anjum, S. Waseem, F. Majid, M. Danish Ali and A. Aslam, Mater. Sci. Pol., 39, 139 (2021); https://doi.org/10.2478/msp-2021-0008
F. Ahangaran and A.H. Navarchian, Adv. Colloid Interface Sci., 286, 102298 (2020); https://doi.org/10.1016/j.cis.2020.102298
M.K. Singh and M.S. Mehata, Opt. Mater., 109, 110309 (2020); https://doi.org/10.1016/j.optmat.2020.110309
Mubasher, M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, A. Rehman and K. Nadeem, Appl. Phys., A Mater. Sci. Process., 126, 334 (2020); https://doi.org/10.1007/s00339-020-03529-y
M. Zahid, H.M. Khan, I. Sadiq, K. Ali, M. Mirza, M.U. Islam, S.A. Buzdar and Aziz-ur-Rehman, J. Mater. Sci.: Mater. Electr., 32, 9183 (2021); https://doi.org/10.1007/s10854-021-05584-4
A. Raghavender and K.M. Jadhav, Bull. Mater. Sci., 32, 575 (2009); https://doi.org/10.1007/s12034-009-0087-8
K. Chandramouli, B. Suryanarayana, P.V.S.K. Phanidhar Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T. Wegayehu Mammo and D. Parajuli, Results Phys., 24, 104117 (2021); https://doi.org/10.1016/j.rinp.2021.104117
G.V. Priya, N. Murali, M. Raju, B. Krishan, D. Parajuli, P. Choppara, B.C. Sekhar, R. Verma, K.M. Batoo and P.V.L. Narayana, Appl. Phys. A, 128, 663 (2022); https://doi.org/10.1007/s00339-022-05809-1