Copyright (c) 2024 Ragaiahgari Srinivas Reddy, Bijaya Ketan Sahoo, Anna Tanuja Safala Bodapati, Shravya Rao Madku, Lavanya Kandikonda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Entropy Driven Binding of 2-(4-Aminophenyl)benzothiazole with DNA: An Experimental and Theoretical Insights
Corresponding Author(s) : Bijaya Ketan Sahoo
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
Molecular recognition driven by molecular interactions is an intricate part of drug discovery and targeted drug delivery systems due to the dependence of thetherapeutic properties of drugs on interaction with desired target biomolecules as receptors. 2-(4-Aminophenyl) benzothiazole (APB), a heterocyclic molecule containing a benzothiazole nucleus, is known to induce apoptosis besides inhibiting cancer cell development and has been found effective against different microorganisms. This study highlights the spectroscopic and theoretical investigation of binding interactions of APB and ct-DNA. The UV-vis experiments indicate a binding constant of 9.73 ± 0.4 × 105 M-1. The measured binding constants of 1.0 ± 0.2 × 105, 2.4 ± 0.3 × 105 and 3.5 ± 0.3 × 105 at 298, 303 and 308 K, respectively, from fluorescence experiments indicated a dynamic quenching type. The binding was driven by hydrophobic forces with positive ΔHº (64.8467 ± 2 KJ mol–1) and ΔSº (317.12 ± 2 J mol–1 K–1) values besides spontaneity of the process with negative ΔGº values. The binding of APB molecule in the minor groove of ct-DNA was demonstrated by DNA melting tests, viscosity measurements and site marker displacement using ethidium bromide and Hoechst. Additional studies conducted by KI provided support for minor groove binding and NaCl has no impact on the binding electrostatic interactions, while the CD investigations showed no DNA structural alterations. Molecular docking studies also confirmed the experimental findings placing APB in the ct-DNA minor groove.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.K. Prashanth, M. Gadewar, S. Rao, M.K. Ghosh, K.V. Yatish and M.M. Swamy, 2024, https://doi.org/10.1039/9781837674015-00086
- N. Paoletti and C.T. Supuran, Arch. Pharm., 357, e2400259 (2024); https://doi.org/10.1002/ardp.202400259
- A. El Alami, A. El Maraghi and H. Sdassi, Synth. Commun., 54, 769 (2024); https://doi.org/10.1080/00397911.2024.2337089
- K.P. Yadav, M.A. Rahman, S. Nishad, S.K. Maurya, M. Anas and M. Mujahid, Intelligent Pharm., 1, 122 (2023); https://doi.org/10.1016/j.ipha.2023.06.001
- R. Mahapatra, K. Hazra and J. Asian, Res. Med. Pharm. Sci., 12, 13 (2023); https://doi.org/10.9734/ajrimps/2023/v12i1206
- R. Dubey, P.K. Shrivastava, P.K. Basniwal, S. Bhattacharya and N.S.H.N. Moorthy, Mini Rev. Med. Chem., 6, 633 (2006); https://doi.org/10.2174/138955706777435706
- S. Teli, A. Sethiya and S. Agarwal, Chemistry, 6, 165 (2024); https://doi.org/10.3390/chemistry6010009
- P.C. Sharma, A. Sinhmar, A. Sharma, H. Rajak and D.P. Pathak, J. Enzym. Inhib. Med. Chem., 28, 240 (2013); https://doi.org/10.3109/14756366.2012.720572
- A. Kamal, M.A.H. Syed and S.M. Mohammed, Expert Opin. Therap. Patents, 25, 335 (2015); https://doi.org/10.1517/13543776.2014.999764
- I. Hutchinson, M.-S. Chua, H.L. Browne, V.T. Tracey, D. Bradshaw, A.D. Westwell and M.F.G. Stevens, J. Med. Chem., 44, 1446 (2001); https://doi.org/10.1021/jm001104n
- B. Mavroidi, M. Sagnou, E. Halevas, G. Mitrikas, F. Kapiris, P. Bouziotis, A.G. Hatzidimitriou, M. Pelecanou and C. Methenitis, Inorganics, 11, 132 (2023); https://doi.org/10.3390/inorganics11030132
- X. Li, Q. Ma, R. Wang, L. Xue, H. Hong, L. Han and N. Zhu, Phosphorus Sulfur Silicon Relat. Elem., 197, 689 (2022); https://doi.org/10.1080/10426507.2022.2033744
- J. Sharma, P. Mishra and J. Bhadoria, Results Chem., 4, 100670 (2022); https://doi.org/10.1016/j.rechem.2022.100670
- C. Kiritsis, B. Mavroidi, A. Shegani, L. Palamaris, G. Loudos, M. Sagnou, I. Pirmettis, M. Papadopoulos and M. Pelecanou, ACS Med. Chem. Lett., 8, 1089 (2017); https://doi.org/10.1021/acsmedchemlett.7b00294
- M.M. Aleksic and V. Kapetanovic, Acta Chim. Slov., 61, 555 (2014).
- M.M.V. Ramana, R. Betkar, A. Nimkar, P. Ranade, B. Mundhe and S. Pardeshi, J. Photochem. Photobiol. B, 151, 194 (2015); https://doi.org/10.1016/j.jphotobiol.2015.08.012
- M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
- R. Hassan, A. Husin, S. Sulong, S. Yusoff, M.F. Johan, B.H. Yahaya, C.Y. Ang, S. Ghazali and S.K. Cheong, Malays. J. Pathol., 37, 165 (2015).
- A. Minhas-Khan, M. Ghafar-Zadeh, T. Shaffaf, S. Forouhi, A. Scime, S. Magierowski and E. Ghafar-Zadeh, Actuators, 10, 246 (2021); https://doi.org/10.3390/act10100246
- M.M. Silva, E.O.O. Nascimento, E.F. Silva, J.X. Araújo, C.C. Santana, L.A.M. Grillo, R.S. de Oliveira, P. R.R.Costa, C.D. Buarque, J.C.C. Santos and I.M. Figueiredo, Int. J. Biol. Macromol., 96, 223 (2017); https://doi.org/10.1016/j.ijbiomac.2016.12.044
- A. Usman and M. Ahmad, Chemosphere, 181, 536 (2017); https://doi.org/10.1016/j.chemosphere.2017.04.115
- Z. Mirzaei-Kalar, J. Pharm. Biomed. Anal., 161, 101 (2018); https://doi.org/10.1016/j.jpba.2018.08.033
- A.C. Wallace, R.A. Laskowski and J.M. Thornton, Prot. Eng. Design Select., 8, 127 (1995); https://doi.org/10.1093/protein/8.2.127
- Ö. Karaca, S.M. Meier-Menches, A. Casini and F.E. Kühn, Chem. Commun., 53, 8249 (2017); https://doi.org/10.1039/C7CC03074F
- A.G. Cherstvy, Phys. Chem. Chem. Phys., 13, 9942 (2011); https://doi.org/10.1039/c0cp02796k
- B.K. Sahoo, K.S. Ghosh, R. Bera and S. Dasgupta, Chem. Phys., 351, 163 (2008); https://doi.org/10.1016/j.chemphys.2008.05.008
- M. Suganthi and K.P. Elango, Phys. Chem. Liquids, 56, 299 (2018); https://doi.org/10.1080/00319104.2017.1329426
- K.G. Fleming, Encyclopedia of Spectroscopy and Spectrometry, 2nd ed., Academic Press, edn. 2 pp 628-634 (2010); https://doi.org/10.1016/B978-0-12-374413-5.00357-2
- S.B. Kou, J.Y. Lin, B.L. Wang, J.H. Shi and Y.X. Liu, J. Mol. Struct., 1224, 129024 (2021); https://doi.org/10.1016/j.molstruc.2020.129024
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US, Boston, MA. USA (2006); https://doi.org/10.1007/978-0-387-46312-4
- M. Zolfagharzadeh, M. Pirouzi, A. Asoodeh, M.R. Saberi and J. Chamani, J. Biomol. Struct. Dyn., 32, 1936 (2014); https://doi.org/10.1080/07391102.2013.843062
- M. Mondal, K. Ramadas and S. Natarajan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 183, 90 (2017); https://doi.org/10.1016/j.saa.2017.04.012
- N. Shakibapour, F. Dehghani Sani, S. Beigoli, H. Sadeghian and J. Chamani, J. Biomol. Struct. Dyn., 37, 359 (2019); https://doi.org/10.1080/07391102.2018.1427629
- S. Li, J. Pan, G. Zhang, J. Xu and D. Gong, Int. J. Biol. Macromol., 101, 736 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.136
- M. Dareini, Z. Amiri Tehranizadeh, N. Marjani, R. Taheri, A. Talebi, S. Aslani-Firoozabadi, N. NayebZadeh Eidgahi, M.R. Saberi and J. Chamani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117528 (2020); https://doi.org/10.1016/j.saa.2019.117528
- P.V. Scaria and R.H. Shafer, J. Biol. Chem., 266, 5417 (1991); https://doi.org/10.1016/S0021-9258(19)67611-8
- S. Latt and G. Stetten, J. Histochem. Cytochem., 24, 24 (1976); https://doi.org/10.1177/24.1.943439
- S.U. Rehman, Z. Yaseen, M.A. Husain, T. Sarwar, H.M. Ishqi and M. Tabish, PLoS One, 9, e93913 (2014); https://doi.org/10.1371/journal.pone.0093913
- T.A. Wani, N. Alsaif, H.A. Bakheit, S. Zargar, A.A. Al-Mehizia and A.A. Khan, Bioorg. Chem., 100, 103957 (2020); https://doi.org/10.1016/j.bioorg.2020.103957
- S. Kashanian, Z. Shariati, H. Roshanfekr and S. Ghobadi, DNA Cell Biol., 31, 1341 (2012); https://doi.org/10.1089/dna.2012.1662
- K. Nejedlý, Nucleic Acids Res., 33, e5 (2005); https://doi.org/10.1093/nar/gni008
- M. Vorlícková, Biophys. J., 69, 2033 (1995); https://doi.org/10.1016/S0006-3495(95)80073-1
- J. Kypr and M. Vorlíèková, Biopolymers, 67, 275 (2002); https://doi.org/10.1002/bip.10112
- P. Uma Maheswari and M. Palaniandavar, J. Inorg. Biochem., 98, 219 (2004); https://doi.org/10.1016/j.jinorgbio.2003.09.003
- V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina and A.I. Poletayev, Biopolymers, 12, 89 (1973); https://doi.org/10.1002/bip.1973.360120109
- S.S. Jain, M. Polak and V.N. Hud, Nucleic Acids Res., 31, 4608 (2003); https://doi.org/10.1093/nar/gkg648
- J.L. Mergny, G. Duval-Valentin, C.H. Nguyen, L. Perrouault, B. Faucon, M. Rougée, T. Montenay-Garestier, E. Bisagni and C. Hélène, Science, 256, 1681 (1992); https://doi.org/10.1126/science.256.5064.1681
- S. Huang, Y. Liang, C. Huang, W. Su, X. Lei, Y. Liu and Q. Xiao, Luminescence, 31, 1384 (2016); https://doi.org/10.1002/bio.3119
- Y. Sun, T. Peng, L. Zhao, D. Jiang and Y. Cui, J. Lumin., 156, 108 (2014); https://doi.org/10.1016/j.jlumin.2014.07.014
- L. Fin and P. Yang, J. Inorg. Biochem., 68, 79 (1997); https://doi.org/10.1016/S0162-0134(97)00004-4
- C. Ji, X. Yin, H. Duan and L. Liang, Int. J. Biol. Macromol., 168, 775 (2021); https://doi.org/10.1016/j.ijbiomac.2020.11.135
- K. Miskovic, M. Bujak, M. Baus Loncar and L. Glavas-Obrovac, Arh. Hig. Rada Toksikol., 64, 593 (2013); https://doi.org/10.2478/10004-1254-64-2013-2371
- C. Sengupta and S. Basu, RSC Adv., 5, 78160 (2015); https://doi.org/10.1039/C5RA13035B
- S. Tabassum, S. Amir, F. Arjmand, C. Pettinari, F. Marchetti, G. Lupidi, N. Masciocchi and G. Pettinari, Eur. J. Med. Chem., 60, 216 (2013); https://doi.org/10.1016/j.ejmech.2012.08.019
- A.T.S. Bodapati, B.K. Sahoo, S.R. Ragaiahgari, L. Kandikonda and S.R. Madku, Int. J. Biol. Macromol., 217, 1027 (2022); https://doi.org/10.1016/j.ijbiomac.2022.07.177
References
G.K. Prashanth, M. Gadewar, S. Rao, M.K. Ghosh, K.V. Yatish and M.M. Swamy, 2024, https://doi.org/10.1039/9781837674015-00086
N. Paoletti and C.T. Supuran, Arch. Pharm., 357, e2400259 (2024); https://doi.org/10.1002/ardp.202400259
A. El Alami, A. El Maraghi and H. Sdassi, Synth. Commun., 54, 769 (2024); https://doi.org/10.1080/00397911.2024.2337089
K.P. Yadav, M.A. Rahman, S. Nishad, S.K. Maurya, M. Anas and M. Mujahid, Intelligent Pharm., 1, 122 (2023); https://doi.org/10.1016/j.ipha.2023.06.001
R. Mahapatra, K. Hazra and J. Asian, Res. Med. Pharm. Sci., 12, 13 (2023); https://doi.org/10.9734/ajrimps/2023/v12i1206
R. Dubey, P.K. Shrivastava, P.K. Basniwal, S. Bhattacharya and N.S.H.N. Moorthy, Mini Rev. Med. Chem., 6, 633 (2006); https://doi.org/10.2174/138955706777435706
S. Teli, A. Sethiya and S. Agarwal, Chemistry, 6, 165 (2024); https://doi.org/10.3390/chemistry6010009
P.C. Sharma, A. Sinhmar, A. Sharma, H. Rajak and D.P. Pathak, J. Enzym. Inhib. Med. Chem., 28, 240 (2013); https://doi.org/10.3109/14756366.2012.720572
A. Kamal, M.A.H. Syed and S.M. Mohammed, Expert Opin. Therap. Patents, 25, 335 (2015); https://doi.org/10.1517/13543776.2014.999764
I. Hutchinson, M.-S. Chua, H.L. Browne, V.T. Tracey, D. Bradshaw, A.D. Westwell and M.F.G. Stevens, J. Med. Chem., 44, 1446 (2001); https://doi.org/10.1021/jm001104n
B. Mavroidi, M. Sagnou, E. Halevas, G. Mitrikas, F. Kapiris, P. Bouziotis, A.G. Hatzidimitriou, M. Pelecanou and C. Methenitis, Inorganics, 11, 132 (2023); https://doi.org/10.3390/inorganics11030132
X. Li, Q. Ma, R. Wang, L. Xue, H. Hong, L. Han and N. Zhu, Phosphorus Sulfur Silicon Relat. Elem., 197, 689 (2022); https://doi.org/10.1080/10426507.2022.2033744
J. Sharma, P. Mishra and J. Bhadoria, Results Chem., 4, 100670 (2022); https://doi.org/10.1016/j.rechem.2022.100670
C. Kiritsis, B. Mavroidi, A. Shegani, L. Palamaris, G. Loudos, M. Sagnou, I. Pirmettis, M. Papadopoulos and M. Pelecanou, ACS Med. Chem. Lett., 8, 1089 (2017); https://doi.org/10.1021/acsmedchemlett.7b00294
M.M. Aleksic and V. Kapetanovic, Acta Chim. Slov., 61, 555 (2014).
M.M.V. Ramana, R. Betkar, A. Nimkar, P. Ranade, B. Mundhe and S. Pardeshi, J. Photochem. Photobiol. B, 151, 194 (2015); https://doi.org/10.1016/j.jphotobiol.2015.08.012
M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
R. Hassan, A. Husin, S. Sulong, S. Yusoff, M.F. Johan, B.H. Yahaya, C.Y. Ang, S. Ghazali and S.K. Cheong, Malays. J. Pathol., 37, 165 (2015).
A. Minhas-Khan, M. Ghafar-Zadeh, T. Shaffaf, S. Forouhi, A. Scime, S. Magierowski and E. Ghafar-Zadeh, Actuators, 10, 246 (2021); https://doi.org/10.3390/act10100246
M.M. Silva, E.O.O. Nascimento, E.F. Silva, J.X. Araújo, C.C. Santana, L.A.M. Grillo, R.S. de Oliveira, P. R.R.Costa, C.D. Buarque, J.C.C. Santos and I.M. Figueiredo, Int. J. Biol. Macromol., 96, 223 (2017); https://doi.org/10.1016/j.ijbiomac.2016.12.044
A. Usman and M. Ahmad, Chemosphere, 181, 536 (2017); https://doi.org/10.1016/j.chemosphere.2017.04.115
Z. Mirzaei-Kalar, J. Pharm. Biomed. Anal., 161, 101 (2018); https://doi.org/10.1016/j.jpba.2018.08.033
A.C. Wallace, R.A. Laskowski and J.M. Thornton, Prot. Eng. Design Select., 8, 127 (1995); https://doi.org/10.1093/protein/8.2.127
Ö. Karaca, S.M. Meier-Menches, A. Casini and F.E. Kühn, Chem. Commun., 53, 8249 (2017); https://doi.org/10.1039/C7CC03074F
A.G. Cherstvy, Phys. Chem. Chem. Phys., 13, 9942 (2011); https://doi.org/10.1039/c0cp02796k
B.K. Sahoo, K.S. Ghosh, R. Bera and S. Dasgupta, Chem. Phys., 351, 163 (2008); https://doi.org/10.1016/j.chemphys.2008.05.008
M. Suganthi and K.P. Elango, Phys. Chem. Liquids, 56, 299 (2018); https://doi.org/10.1080/00319104.2017.1329426
K.G. Fleming, Encyclopedia of Spectroscopy and Spectrometry, 2nd ed., Academic Press, edn. 2 pp 628-634 (2010); https://doi.org/10.1016/B978-0-12-374413-5.00357-2
S.B. Kou, J.Y. Lin, B.L. Wang, J.H. Shi and Y.X. Liu, J. Mol. Struct., 1224, 129024 (2021); https://doi.org/10.1016/j.molstruc.2020.129024
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US, Boston, MA. USA (2006); https://doi.org/10.1007/978-0-387-46312-4
M. Zolfagharzadeh, M. Pirouzi, A. Asoodeh, M.R. Saberi and J. Chamani, J. Biomol. Struct. Dyn., 32, 1936 (2014); https://doi.org/10.1080/07391102.2013.843062
M. Mondal, K. Ramadas and S. Natarajan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 183, 90 (2017); https://doi.org/10.1016/j.saa.2017.04.012
N. Shakibapour, F. Dehghani Sani, S. Beigoli, H. Sadeghian and J. Chamani, J. Biomol. Struct. Dyn., 37, 359 (2019); https://doi.org/10.1080/07391102.2018.1427629
S. Li, J. Pan, G. Zhang, J. Xu and D. Gong, Int. J. Biol. Macromol., 101, 736 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.136
M. Dareini, Z. Amiri Tehranizadeh, N. Marjani, R. Taheri, A. Talebi, S. Aslani-Firoozabadi, N. NayebZadeh Eidgahi, M.R. Saberi and J. Chamani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 228, 117528 (2020); https://doi.org/10.1016/j.saa.2019.117528
P.V. Scaria and R.H. Shafer, J. Biol. Chem., 266, 5417 (1991); https://doi.org/10.1016/S0021-9258(19)67611-8
S. Latt and G. Stetten, J. Histochem. Cytochem., 24, 24 (1976); https://doi.org/10.1177/24.1.943439
S.U. Rehman, Z. Yaseen, M.A. Husain, T. Sarwar, H.M. Ishqi and M. Tabish, PLoS One, 9, e93913 (2014); https://doi.org/10.1371/journal.pone.0093913
T.A. Wani, N. Alsaif, H.A. Bakheit, S. Zargar, A.A. Al-Mehizia and A.A. Khan, Bioorg. Chem., 100, 103957 (2020); https://doi.org/10.1016/j.bioorg.2020.103957
S. Kashanian, Z. Shariati, H. Roshanfekr and S. Ghobadi, DNA Cell Biol., 31, 1341 (2012); https://doi.org/10.1089/dna.2012.1662
K. Nejedlý, Nucleic Acids Res., 33, e5 (2005); https://doi.org/10.1093/nar/gni008
M. Vorlícková, Biophys. J., 69, 2033 (1995); https://doi.org/10.1016/S0006-3495(95)80073-1
J. Kypr and M. Vorlíèková, Biopolymers, 67, 275 (2002); https://doi.org/10.1002/bip.10112
P. Uma Maheswari and M. Palaniandavar, J. Inorg. Biochem., 98, 219 (2004); https://doi.org/10.1016/j.jinorgbio.2003.09.003
V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina and A.I. Poletayev, Biopolymers, 12, 89 (1973); https://doi.org/10.1002/bip.1973.360120109
S.S. Jain, M. Polak and V.N. Hud, Nucleic Acids Res., 31, 4608 (2003); https://doi.org/10.1093/nar/gkg648
J.L. Mergny, G. Duval-Valentin, C.H. Nguyen, L. Perrouault, B. Faucon, M. Rougée, T. Montenay-Garestier, E. Bisagni and C. Hélène, Science, 256, 1681 (1992); https://doi.org/10.1126/science.256.5064.1681
S. Huang, Y. Liang, C. Huang, W. Su, X. Lei, Y. Liu and Q. Xiao, Luminescence, 31, 1384 (2016); https://doi.org/10.1002/bio.3119
Y. Sun, T. Peng, L. Zhao, D. Jiang and Y. Cui, J. Lumin., 156, 108 (2014); https://doi.org/10.1016/j.jlumin.2014.07.014
L. Fin and P. Yang, J. Inorg. Biochem., 68, 79 (1997); https://doi.org/10.1016/S0162-0134(97)00004-4
C. Ji, X. Yin, H. Duan and L. Liang, Int. J. Biol. Macromol., 168, 775 (2021); https://doi.org/10.1016/j.ijbiomac.2020.11.135
K. Miskovic, M. Bujak, M. Baus Loncar and L. Glavas-Obrovac, Arh. Hig. Rada Toksikol., 64, 593 (2013); https://doi.org/10.2478/10004-1254-64-2013-2371
C. Sengupta and S. Basu, RSC Adv., 5, 78160 (2015); https://doi.org/10.1039/C5RA13035B
S. Tabassum, S. Amir, F. Arjmand, C. Pettinari, F. Marchetti, G. Lupidi, N. Masciocchi and G. Pettinari, Eur. J. Med. Chem., 60, 216 (2013); https://doi.org/10.1016/j.ejmech.2012.08.019
A.T.S. Bodapati, B.K. Sahoo, S.R. Ragaiahgari, L. Kandikonda and S.R. Madku, Int. J. Biol. Macromol., 217, 1027 (2022); https://doi.org/10.1016/j.ijbiomac.2022.07.177