Copyright (c) 2024 Dr.Ramesh Kaliyaperumal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sustainable Porous Activated Carbon from the Bark of Wood Apple Tree as Electrode Material for Supercapacitor Application
Corresponding Author(s) : K. Ramesh
Asian Journal of Chemistry,
Vol. 37 No. 1 (2025): Vol 37 Issue 1, 2025
Abstract
The remarkable microstructural characteristics of porous carbons make them attractive as electrode materials for supercapacitors. The production of porous carbon from biowaste materials has gained considerable attention because of their affordability and natural abundance. This work approaches the preparation of porous carbon using the bark of wood apple tree precursor. The X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy techniques were performed to evaluate the physico-chemical parameters of prepared activated carbon material. In three-electrode electrochemical tests, the activated carbon WABAC3 provides the specific capacitance of 345 F g–1 at a current density of 1 A g–1 in 1 M Na2SO4 electrolyte with remarkable rate capability. It provides the cyclic stability of 91% of initial capacitance after 5000 continuous GCD cycles at a current density of 5 A g–1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Xia, Q. Gao, J. Jiang and J. Hu, Carbon, 46, 1718 (2008); https://doi.org/10.1016/j.carbon.2008.07.018
- X.Q. Lin, Q.F. Lü, Q. Li, M. Wu and R. Liu, ACS Omega, 3, 13283 (2018); https://doi.org/10.1021/acsomega.8b01718
- N. Velychkivska, A. Golunova, A. Panda, P.A. Shinde, R. Ma, K. Ariga, Y. Yamauchi, J.P. Hill, J. Labuta and L.K. Shrestha, ACS Appl. Energy Mater., 7, 2906 (2024); https://doi.org/10.1021/acsaem.4c00141
- J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai and P.M. Johnson, J. Electroanal. Chem., 797, 78 (2017); https://doi.org/10.1016/j.jelechem.2017.05.019
- B. Frenzel, P. Kurzweil and H. Rönnebeck, J. Power Sources, 196, 5364 (2011); https://doi.org/10.1016/j.jpowsour.2010.10.057
- J. Yesuraj, S. Austin Suthanthiraraj and O. Padmaraj, Mater. Sci. Semicond. Process., 90, 225 (2019); https://doi.org/10.1016/j.mssp.2018.10.030
- J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang and R.S. Ruoff, ACS Nano, 7, 6237 (2013); https://doi.org/10.1021/nn4021955
- N. Zhao, S. Wu, C. He, C. Shi, E. Liu, X. Du and J. Li, Mater. Lett., 87, 77 (2012); https://doi.org/10.1016/j.matlet.2012.07.085
- C. Reimer, M.R. Snowdon, S. Vivekanandhan, X. You, M. Misra, S. Gregori, D.F. Mielewski and A.K. Mohanty, Bioresour. Technol. Rep., 9, 100375 (2020); https://doi.org/10.1016/j.biteb.2019.100375
- Y. Lu, F. Xu, L. Sun, Y. Wu, Y. Xia, X. Cai, N. Zhong, H. Zhang, B. Li and H. Chu, Int. J. Electrochem. Sci., 14, 11199 (2019); https://doi.org/10.20964/2019.12.54
- S. Sadaka and A.A. Boateng, Pyrolysis and Bio-Oil, Agriculture and Natural Resources, FSA1052, University of Arkansas: Fayetteville, AK, USA (2010).
- I.I. Gurten Inal, S.M. Holmes, E. Yagmur, N. Ermumcu, A. Banford and Z. Aktas, J. Ind. Eng. Chem., 61, 124 (2018); https://doi.org/10.1016/j.jiec.2017.12.009
- M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan and J.P. Merlin, New J. Chem., 41, 3939 (2017); https://doi.org/10.1039/C6NJ03867K
- F. Ma, S. Ding, H. Ren and Y. Liu, RSC Adv., 9, 2474 (2019); https://doi.org/10.1039/C8RA09685F
- M. Vinayagam, R. Suresh Babu, A. Sivasamy and A.L.F. de Barros, Carbon Lett., 31, 1133 (2021); https://doi.org/10.1007/s42823-021-00235-4
- S. Ahmed, A. Ahmed and M. Rafat, J. Energy Storage, 26, 100988 (2019); https://doi.org/10.1016/j.est.2019.100988
- A.A. Mohammed, C. Chen and Z. Zhu, J. Colloid Interface Sci., 538, 308 (2019); https://doi.org/10.1016/j.jcis.2018.11.103
- T. Jin, J. Su, Q. Luo, W. Zhu, H. Lai, D. Huang and C. Wang, ACS Omega, 7, 37564 (2022); https://doi.org/10.1021/acsomega.2c04369
- M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
- J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane and T.C. Maloney, ACS Omega, 4, 18108 (2019); https://doi.org/10.1021/acsomega.9b01977
- P. Wang, Q. Wang, G. Zhang, H. Jiao, X. Deng and L. Liu, J. Solid State Electrochem., 20, 319 (2016); https://doi.org/10.1007/s10008-015-3042-1
- D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
- Z. Sitorus, Halimatuddahliana, E. Sembiring and R.F.Y. Butar-butar, J. Phys.: Conf. Series, 2733, 012007 (2024); https://doi.org/10.1088/1742-6596/2733/1/012007
- Z. Xu, T. Zhang, Z. Yuan, D. Zhang, Z. Sun, Y.X. Huang, W. Chen, D. Tian, H. Deng and Y. Zhou, RSC Adv., 8, 38081 (2018); https://doi.org/10.1039/C8RA06253F
- S.K. Shahcheragh, M.M. Bagheri Mohagheghi and A. Shirpay, SN Appl. Sci., 5, 313 (2023); https://doi.org/10.1007/s42452-023-05559-6
- M. Danish and T. Ahmad, Renew. Sustain. Energy Rev., 87, 1 (2018); https://doi.org/10.1016/j.rser.2018.02.003
- S. Sharma, M. Kaur, C. Sharma, A. Choudhary and S. Paul, ACS Omega, 6, 19529 (2021); https://doi.org/10.1021/acsomega.1c01830
- J. Kaur, A.K. Sarma, M.K. Jha and P. Gera, RSC Adv., 10, 43334 (2020); https://doi.org/10.1039/D0RA08203A
- M. Jahan and F. Feni, Mater. Phys. Chem., 12, 106 (2022); https://doi.org/10.4236/ampc.2022.125008
- R.B.N. Lekene, D. Kouotou, N.O. Ankoro, A.P.M.S. Kouoh, J.N. Ndi and J.M. Ketcha, J. Saudi Chem. Soc., 25, 101316 (2021); https://doi.org/10.1016/j.jscs.2021.101316
- D. Arvind and G. Hegde, RSC Adv., 5, 88339 (2015); https://doi.org/10.1039/C5RA19392C
- Y. Liu, K. Shi and I. Zhitomirsky, Electrochim. Acta, 233, 142 (2017); https://doi.org/10.1016/j.electacta.2017.03.028
- M. Sekar, V. Sakthi and S. Rengaraj, J. Colloid Interface Sci., 279, 307 (2004); https://doi.org/10.1016/j.jcis.2004.06.042
- X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao and G.Q. Lu, Bioresour. Technol., 102, 1118 (2011); https://doi.org/10.1016/j.biortech.2010.08.110
- D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra and N.G. Renganathan, J. Power Sources, 190, 587 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.058
- J.M. Rosas, R.Ã. Berenguer, M.Ã.J.Ã. Valero-Romero, J.Ã. Rodraguez-Mirasol and T.Ã. Cordero, Front. Mater., 1, 1 (2014); https://doi.org/10.3389/fmats.2014.00029
- C.S. Yang, Y.S. Jang and H.K. Jeong, Curr. Appl. Phys., 14, 1616 (2014); https://doi.org/10.1016/j.cap.2014.09.021
- K. Kanjana, P. Harding, T. Kwamman, W. Kingkam and T. Chutimasakul, Biomass Bioenergy, 153, 106206 (2021); https://doi.org/10.1016/j.biombioe.2021.106206
References
K. Xia, Q. Gao, J. Jiang and J. Hu, Carbon, 46, 1718 (2008); https://doi.org/10.1016/j.carbon.2008.07.018
X.Q. Lin, Q.F. Lü, Q. Li, M. Wu and R. Liu, ACS Omega, 3, 13283 (2018); https://doi.org/10.1021/acsomega.8b01718
N. Velychkivska, A. Golunova, A. Panda, P.A. Shinde, R. Ma, K. Ariga, Y. Yamauchi, J.P. Hill, J. Labuta and L.K. Shrestha, ACS Appl. Energy Mater., 7, 2906 (2024); https://doi.org/10.1021/acsaem.4c00141
J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai and P.M. Johnson, J. Electroanal. Chem., 797, 78 (2017); https://doi.org/10.1016/j.jelechem.2017.05.019
B. Frenzel, P. Kurzweil and H. Rönnebeck, J. Power Sources, 196, 5364 (2011); https://doi.org/10.1016/j.jpowsour.2010.10.057
J. Yesuraj, S. Austin Suthanthiraraj and O. Padmaraj, Mater. Sci. Semicond. Process., 90, 225 (2019); https://doi.org/10.1016/j.mssp.2018.10.030
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang and R.S. Ruoff, ACS Nano, 7, 6237 (2013); https://doi.org/10.1021/nn4021955
N. Zhao, S. Wu, C. He, C. Shi, E. Liu, X. Du and J. Li, Mater. Lett., 87, 77 (2012); https://doi.org/10.1016/j.matlet.2012.07.085
C. Reimer, M.R. Snowdon, S. Vivekanandhan, X. You, M. Misra, S. Gregori, D.F. Mielewski and A.K. Mohanty, Bioresour. Technol. Rep., 9, 100375 (2020); https://doi.org/10.1016/j.biteb.2019.100375
Y. Lu, F. Xu, L. Sun, Y. Wu, Y. Xia, X. Cai, N. Zhong, H. Zhang, B. Li and H. Chu, Int. J. Electrochem. Sci., 14, 11199 (2019); https://doi.org/10.20964/2019.12.54
S. Sadaka and A.A. Boateng, Pyrolysis and Bio-Oil, Agriculture and Natural Resources, FSA1052, University of Arkansas: Fayetteville, AK, USA (2010).
I.I. Gurten Inal, S.M. Holmes, E. Yagmur, N. Ermumcu, A. Banford and Z. Aktas, J. Ind. Eng. Chem., 61, 124 (2018); https://doi.org/10.1016/j.jiec.2017.12.009
M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Munusamy, E. Elanthamilan and J.P. Merlin, New J. Chem., 41, 3939 (2017); https://doi.org/10.1039/C6NJ03867K
F. Ma, S. Ding, H. Ren and Y. Liu, RSC Adv., 9, 2474 (2019); https://doi.org/10.1039/C8RA09685F
M. Vinayagam, R. Suresh Babu, A. Sivasamy and A.L.F. de Barros, Carbon Lett., 31, 1133 (2021); https://doi.org/10.1007/s42823-021-00235-4
S. Ahmed, A. Ahmed and M. Rafat, J. Energy Storage, 26, 100988 (2019); https://doi.org/10.1016/j.est.2019.100988
A.A. Mohammed, C. Chen and Z. Zhu, J. Colloid Interface Sci., 538, 308 (2019); https://doi.org/10.1016/j.jcis.2018.11.103
T. Jin, J. Su, Q. Luo, W. Zhu, H. Lai, D. Huang and C. Wang, ACS Omega, 7, 37564 (2022); https://doi.org/10.1021/acsomega.2c04369
M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane and T.C. Maloney, ACS Omega, 4, 18108 (2019); https://doi.org/10.1021/acsomega.9b01977
P. Wang, Q. Wang, G. Zhang, H. Jiao, X. Deng and L. Liu, J. Solid State Electrochem., 20, 319 (2016); https://doi.org/10.1007/s10008-015-3042-1
D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
Z. Sitorus, Halimatuddahliana, E. Sembiring and R.F.Y. Butar-butar, J. Phys.: Conf. Series, 2733, 012007 (2024); https://doi.org/10.1088/1742-6596/2733/1/012007
Z. Xu, T. Zhang, Z. Yuan, D. Zhang, Z. Sun, Y.X. Huang, W. Chen, D. Tian, H. Deng and Y. Zhou, RSC Adv., 8, 38081 (2018); https://doi.org/10.1039/C8RA06253F
S.K. Shahcheragh, M.M. Bagheri Mohagheghi and A. Shirpay, SN Appl. Sci., 5, 313 (2023); https://doi.org/10.1007/s42452-023-05559-6
M. Danish and T. Ahmad, Renew. Sustain. Energy Rev., 87, 1 (2018); https://doi.org/10.1016/j.rser.2018.02.003
S. Sharma, M. Kaur, C. Sharma, A. Choudhary and S. Paul, ACS Omega, 6, 19529 (2021); https://doi.org/10.1021/acsomega.1c01830
J. Kaur, A.K. Sarma, M.K. Jha and P. Gera, RSC Adv., 10, 43334 (2020); https://doi.org/10.1039/D0RA08203A
M. Jahan and F. Feni, Mater. Phys. Chem., 12, 106 (2022); https://doi.org/10.4236/ampc.2022.125008
R.B.N. Lekene, D. Kouotou, N.O. Ankoro, A.P.M.S. Kouoh, J.N. Ndi and J.M. Ketcha, J. Saudi Chem. Soc., 25, 101316 (2021); https://doi.org/10.1016/j.jscs.2021.101316
D. Arvind and G. Hegde, RSC Adv., 5, 88339 (2015); https://doi.org/10.1039/C5RA19392C
Y. Liu, K. Shi and I. Zhitomirsky, Electrochim. Acta, 233, 142 (2017); https://doi.org/10.1016/j.electacta.2017.03.028
M. Sekar, V. Sakthi and S. Rengaraj, J. Colloid Interface Sci., 279, 307 (2004); https://doi.org/10.1016/j.jcis.2004.06.042
X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao and G.Q. Lu, Bioresour. Technol., 102, 1118 (2011); https://doi.org/10.1016/j.biortech.2010.08.110
D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra and N.G. Renganathan, J. Power Sources, 190, 587 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.058
J.M. Rosas, R.Ã. Berenguer, M.Ã.J.Ã. Valero-Romero, J.Ã. Rodraguez-Mirasol and T.Ã. Cordero, Front. Mater., 1, 1 (2014); https://doi.org/10.3389/fmats.2014.00029
C.S. Yang, Y.S. Jang and H.K. Jeong, Curr. Appl. Phys., 14, 1616 (2014); https://doi.org/10.1016/j.cap.2014.09.021
K. Kanjana, P. Harding, T. Kwamman, W. Kingkam and T. Chutimasakul, Biomass Bioenergy, 153, 106206 (2021); https://doi.org/10.1016/j.biombioe.2021.106206