Copyright (c) 2024 SWAPNA DUPPATI, K. Jyothi Priya, V. Sruthi, M. Suneetha, R. Jayashree, G. Himabindu, S. Paul Douglas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies of ZnO/NiO/MoO3 Ternary Nanocomposite as an Effective Visible Light Photocatalyst
Corresponding Author(s) : D. Swapna
Asian Journal of Chemistry,
Vol. 36 No. 12 (2024): Vol 36 Issue 12, 2024
Abstract
In this work, following a facile coprecipitation technique, a novel ternary ZnO/NiO/MoO3 heterojunction photocatalysts was synthesized and characterized using SEM, TEM, UV-Vis DRS, XRD and FTIR analysis. Under visible light irradiation, the photodegradation of organic pollutants, such as methylene blue, was studied. Comparing the ternary nanocomposite to ZnO, NiO, MoO3 and binary ZnO/NiO, NiO/MoO3 nanocomposite, the former showed better photocatalytic performance. The energy band gap of ZnO/NiO/MoO3 nanocomposite was evaluated using Tauc plot from absorption spectra and resulted as 2.67 eV. The best photocatalytic activity for methylene blue (100%) was shown by ternary ZnO/NiO/MoO3 photocatalyst within 55 min. The development of the ZnO/NiO/MoO3 heterojunction photocatalyst, which is advantageous for effective fast transfer and separation of the photoexcited charge carriers, could be attributed to the better photocatalytic presentation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Borker and A.V. Salker, Mater. Sci. Eng. B, 133, 55 (2006); https://doi.org/10.1016/j.mseb.2006.05.007
- J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio and E. Drioli, J. Environ. Manage., 147, 55 (2015); https://doi.org/10.1016/j.jenvman.2014.08.008
- X.M. Tang, H.L. Zheng, H.K. Teng, Y.J. Sun, J.S. Guo, W.Y. Xie, Q.Q. Yang and W. Chen, Desalination Water Treat., 57, 1733 (2016); https://doi.org/10.1080/19443994.2014.977959
- R. Gusain, K. Gupta, P. Joshi and O. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
- E.L. Hu, S.M. Shang, X.M. Tao, S.X. Jiang and K.L. Chiu, J. Clean. Prod., 137, 1055 (2016); https://doi.org/10.1016/j.jclepro.2016.07.194
- P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter and S. Kalagara, Environ. Int., 91, 94 (2016); https://doi.org/10.1016/j.envint.2016.02.012
- N. Yahya, F. Aziz, N.A. Jamaludin, M. A. Mutalib, A.F. Ismail, W.N. W. Salleh, J. Jaafar, N. Yusof and N. A. Ludin, J. Environ. Chem. Eng., 6, 7411 (2018); https://doi.org/10.1016/j.jece.2018.06.051
- B.S. Liu, X.J. Zhao, C. Terashima, A. Fujishima and K. Nakata, Phys. Chem. Chem. Phys., 16, 8751 (2014); https://doi.org/10.1039/c3cp55317e
- V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol. Photochem. Rev., 7, 127 (2006); https://doi.org/10.1016/j.jphotochemrev.2006.12.001
- J.M. Herrmann, Appl. Catal. B, 99, 461 (2010); https://doi.org/10.1016/j.apcatb.2010.05.012
- C.B. Ong, L.Y. Ng and A.W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018); https://doi.org/10.1016/j.rser.2017.08.020
- F.X. Wang, L. Liang, L. Shi, M.S. Liu and J.M. Sun, Dalton Trans., 43, 16441 (2014); https://doi.org/10.1039/C4DT02098G
- C.C. Hu, L. Lu, Y.J. Zhu, R. Li and Y.J. Xing, Mater. Chem. Phys., 217, 182 (2018); https://doi.org/10.1016/j.matchemphys.2018.06.068
- J.H. Lang, J.Y. Wang, Q. Zhang, X.Y. Li, Q. Han, M.B. Wei, Y.R. Sui, D.D. Wang and J.H. Yang, Ceram. Int., 42, 14175 (2016); https://doi.org/10.1016/j.ceramint.2016.06.042
- A. Samanta, M.N. Goswami and P.K. Mahapatra, Physica E, 104, 254 (2018); https://doi.org/10.1016/j.physe.2018.07.042
- Z. Zhang, G. Chen and D.W. Bahnemann, J. Mater. Chem., 19, 5089 (2009); https://doi.org/10.1039/b821991e
- H. Benhebal, M. Chaib, A.L. Leonard, S.D. Lambert and M. Crine, Mater. Sci. Semicond. Process., 15, 264 (2012); https://doi.org/10.1016/j.mssp.2011.12.001
- R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089
- S.A. Ansari, S. Ansari, H. Foaud and M. Cho, New J. Chem., 41, 9314 (2017); https://doi.org/10.1039/C6NJ04070E
- R. Rangel, V. Cedeño, A. Ramos-Corona, R. Gutiérrez, J.J. Alvarado-Gil, O. Ares, P. Bartolo-Pérez and P. Quintana, Appl. Phys., A Mater. Sci. Process., 123, 552 (2017); https://doi.org/10.1007/s00339-017-1137-5
- B. Xue and Y. Zou, Appl. Surf. Sci., 440, 1123 (2018); https://doi.org/10.1016/j.apsusc.2018.01.299
- J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma and R. Liu, Appl. Surf. Sci., 392, 196 (2017); https://doi.org/10.1016/j.apsusc.2016.09.043
- R. Raji, K.S. Sibi and K.G. Gopchandran, Appl. Surf. Sci., 427, 863 (2018); https://doi.org/10.1016/j.apsusc.2017.09.050
- Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, ACS Appl. Mater. Interfaces, 2, 2915 (2010); https://doi.org/10.1021/am100618h
- P. Shukla and J.K. Shukla, J. Sci. Adv. Mater. Devices, 3, 452 (2018); https://doi.org/10.1016/j.jsamd.2018.09.005
- C. Luo, D. Li, W. Wu, Y. Zhang and C. Pan, RSC Adv., 4, 3090 (2014); https://doi.org/10.1039/C3RA44670K
- Y. Liu, G. Li, R. Mi, C. Deng and P. Gao, Sens. Actuators B Chem., 191, 537 (2014); https://doi.org/10.1016/j.snb.2013.10.068
- M. Xiao, Y. Lu, Y. Li, H. Song, L. Zhu and Z. Ye, RSC Adv., 4, 34649 (2014); https://doi.org/10.1039/C4RA04600E
- B. Li and Y. Wang, Superlattices Microstruct., 47, 615 (2010); https://doi.org/10.1016/j.spmi.2010.02.005
- R.K. Sharma, D. Kumar and R. Ghose, Ceram. Int., 42, 4090 (2016); https://doi.org/10.1016/j.ceramint.2015.11.081
- K.H. Kim, Y. Yoshihara, Y. Abe, M. Kawamura and T. Kiba, Mater. Lett., 186, 364 (2017); https://doi.org/10.1016/j.matlet.2016.10.052
- J. Huang, X. Wang, S. Li and Y. Wang, Appl. Surf. Sci., 257, 116 (2010); https://doi.org/10.1016/j.apsusc.2010.06.046
- M. Tanveer, I. Nisa, G. Nabi, M. Khalid Hussain, S. Khalid and M.A. Qadeer, J. Magn. Magn. Mater., 553, 169245 (2022); https://doi.org/10.1016/j.jmmm.2022.169245
- D. Saminathan, T. Deogratias, S. Thirugnanasambandan, N. Vengidusamy and S. Arumainathan, Mater. Lett., 262, 127049 (2020); https://doi.org/10.1016/j.matlet.2019.127049
- C. Han, R. Zhang, Y. Ye, L. Wang, Z. Ma, F. Su, H. Xie, Y. Zhou, P.K. Wong and L. Ye, J. Mater. Chem. A Mater. Energy Sustain., 7, 9726 (2019); https://doi.org/10.1039/C9TA01061K
- A.K. Ramasami, M.V. Reddy and G.R. Balakrishna, Mater. Sci. Semicond. Process., 40, 194 (2015); https://doi.org/10.1016/j.mssp.2015.06.017
- S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R.S. Ganesh, S. Ponnusamy, P. Raji and L.P. Purohit, Optik, 127, 10727 (2016); https://doi.org/10.1016/j.ijleo.2016.08.126
- D.D. Joyal Mary, V. Baiju, R. Biju and R. Raveendran, Int. J. Adv. Res. Sci. Eng, 06, 284 (2017).
- A. Khatri and P. Rana, Bull. Mater. Sci., 42, 141 (2019); https://doi.org/10.1007/s12034-019-1835-z
- B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P. Liu and Q. Gu, Appl. Catal. B, 206, 242 (2017); https://doi.org/10.1016/j.apcatb.2017.01.029
- L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu and H. Li, Appl. Surf. Sci., 283, 25 (2013); https://doi.org/10.1016/j.apsusc.2013.05.106
- Z. Hu, J. Zhou, Y. Zhang, W. Liu, J. Zhou and W. Cai, Chem. Phys. Lett., 706, 208 (2018); https://doi.org/10.1016/j.cplett.2018.06.006
- C. Ma, J. Zhou, H. Zhu, W. Yang, J. Liu, Y. Wang and Z. Zou, ACS Appl. Mater. Interfaces, 7, 14628 (2015); https://doi.org/10.1021/acsami.5b01356
- Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv and G. Liu, Appl. Catal. B, 229, 96 (2018); https://doi.org/10.1016/j.apcatb.2018.02.011
- H.L. Haile, T. Abi and K. Tesfahun, Afr. J. Pure Appl. Chem., 9, 211 (2015); https://doi.org/10.5897/AJPAC2015.0656
- F.T. Johra and W.G. Jung, Appl. Catal. A Gen., 491, 52 (2015); https://doi.org/10.1016/j.apcata.2014.11.036
- M. Fabian, E. Svab and K. Krezhov, J. Non-Cryst. Solids, 433, 6 (2016); https://doi.org/10.1016/j.jnoncrysol.2015.11.023
- G.K. Upadhyay, J.K. Rajput, T.K. Pathak, P.K. Pal and L.P. Purohit, Appl. Surf. Sci., 509, 145326 (2020); https://doi.org/10.1016/j.apsusc.2020.145326
- S. Sharma, R. Sharma and A.K. Sharma, Curr. Environ. Eng., 5, 221 (2018); https://doi.org/10.2174/2212717805666180801143324
References
P. Borker and A.V. Salker, Mater. Sci. Eng. B, 133, 55 (2006); https://doi.org/10.1016/j.mseb.2006.05.007
J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio and E. Drioli, J. Environ. Manage., 147, 55 (2015); https://doi.org/10.1016/j.jenvman.2014.08.008
X.M. Tang, H.L. Zheng, H.K. Teng, Y.J. Sun, J.S. Guo, W.Y. Xie, Q.Q. Yang and W. Chen, Desalination Water Treat., 57, 1733 (2016); https://doi.org/10.1080/19443994.2014.977959
R. Gusain, K. Gupta, P. Joshi and O. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
E.L. Hu, S.M. Shang, X.M. Tao, S.X. Jiang and K.L. Chiu, J. Clean. Prod., 137, 1055 (2016); https://doi.org/10.1016/j.jclepro.2016.07.194
P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter and S. Kalagara, Environ. Int., 91, 94 (2016); https://doi.org/10.1016/j.envint.2016.02.012
N. Yahya, F. Aziz, N.A. Jamaludin, M. A. Mutalib, A.F. Ismail, W.N. W. Salleh, J. Jaafar, N. Yusof and N. A. Ludin, J. Environ. Chem. Eng., 6, 7411 (2018); https://doi.org/10.1016/j.jece.2018.06.051
B.S. Liu, X.J. Zhao, C. Terashima, A. Fujishima and K. Nakata, Phys. Chem. Chem. Phys., 16, 8751 (2014); https://doi.org/10.1039/c3cp55317e
V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol. Photochem. Rev., 7, 127 (2006); https://doi.org/10.1016/j.jphotochemrev.2006.12.001
J.M. Herrmann, Appl. Catal. B, 99, 461 (2010); https://doi.org/10.1016/j.apcatb.2010.05.012
C.B. Ong, L.Y. Ng and A.W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018); https://doi.org/10.1016/j.rser.2017.08.020
F.X. Wang, L. Liang, L. Shi, M.S. Liu and J.M. Sun, Dalton Trans., 43, 16441 (2014); https://doi.org/10.1039/C4DT02098G
C.C. Hu, L. Lu, Y.J. Zhu, R. Li and Y.J. Xing, Mater. Chem. Phys., 217, 182 (2018); https://doi.org/10.1016/j.matchemphys.2018.06.068
J.H. Lang, J.Y. Wang, Q. Zhang, X.Y. Li, Q. Han, M.B. Wei, Y.R. Sui, D.D. Wang and J.H. Yang, Ceram. Int., 42, 14175 (2016); https://doi.org/10.1016/j.ceramint.2016.06.042
A. Samanta, M.N. Goswami and P.K. Mahapatra, Physica E, 104, 254 (2018); https://doi.org/10.1016/j.physe.2018.07.042
Z. Zhang, G. Chen and D.W. Bahnemann, J. Mater. Chem., 19, 5089 (2009); https://doi.org/10.1039/b821991e
H. Benhebal, M. Chaib, A.L. Leonard, S.D. Lambert and M. Crine, Mater. Sci. Semicond. Process., 15, 264 (2012); https://doi.org/10.1016/j.mssp.2011.12.001
R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089
S.A. Ansari, S. Ansari, H. Foaud and M. Cho, New J. Chem., 41, 9314 (2017); https://doi.org/10.1039/C6NJ04070E
R. Rangel, V. Cedeño, A. Ramos-Corona, R. Gutiérrez, J.J. Alvarado-Gil, O. Ares, P. Bartolo-Pérez and P. Quintana, Appl. Phys., A Mater. Sci. Process., 123, 552 (2017); https://doi.org/10.1007/s00339-017-1137-5
B. Xue and Y. Zou, Appl. Surf. Sci., 440, 1123 (2018); https://doi.org/10.1016/j.apsusc.2018.01.299
J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma and R. Liu, Appl. Surf. Sci., 392, 196 (2017); https://doi.org/10.1016/j.apsusc.2016.09.043
R. Raji, K.S. Sibi and K.G. Gopchandran, Appl. Surf. Sci., 427, 863 (2018); https://doi.org/10.1016/j.apsusc.2017.09.050
Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, ACS Appl. Mater. Interfaces, 2, 2915 (2010); https://doi.org/10.1021/am100618h
P. Shukla and J.K. Shukla, J. Sci. Adv. Mater. Devices, 3, 452 (2018); https://doi.org/10.1016/j.jsamd.2018.09.005
C. Luo, D. Li, W. Wu, Y. Zhang and C. Pan, RSC Adv., 4, 3090 (2014); https://doi.org/10.1039/C3RA44670K
Y. Liu, G. Li, R. Mi, C. Deng and P. Gao, Sens. Actuators B Chem., 191, 537 (2014); https://doi.org/10.1016/j.snb.2013.10.068
M. Xiao, Y. Lu, Y. Li, H. Song, L. Zhu and Z. Ye, RSC Adv., 4, 34649 (2014); https://doi.org/10.1039/C4RA04600E
B. Li and Y. Wang, Superlattices Microstruct., 47, 615 (2010); https://doi.org/10.1016/j.spmi.2010.02.005
R.K. Sharma, D. Kumar and R. Ghose, Ceram. Int., 42, 4090 (2016); https://doi.org/10.1016/j.ceramint.2015.11.081
K.H. Kim, Y. Yoshihara, Y. Abe, M. Kawamura and T. Kiba, Mater. Lett., 186, 364 (2017); https://doi.org/10.1016/j.matlet.2016.10.052
J. Huang, X. Wang, S. Li and Y. Wang, Appl. Surf. Sci., 257, 116 (2010); https://doi.org/10.1016/j.apsusc.2010.06.046
M. Tanveer, I. Nisa, G. Nabi, M. Khalid Hussain, S. Khalid and M.A. Qadeer, J. Magn. Magn. Mater., 553, 169245 (2022); https://doi.org/10.1016/j.jmmm.2022.169245
D. Saminathan, T. Deogratias, S. Thirugnanasambandan, N. Vengidusamy and S. Arumainathan, Mater. Lett., 262, 127049 (2020); https://doi.org/10.1016/j.matlet.2019.127049
C. Han, R. Zhang, Y. Ye, L. Wang, Z. Ma, F. Su, H. Xie, Y. Zhou, P.K. Wong and L. Ye, J. Mater. Chem. A Mater. Energy Sustain., 7, 9726 (2019); https://doi.org/10.1039/C9TA01061K
A.K. Ramasami, M.V. Reddy and G.R. Balakrishna, Mater. Sci. Semicond. Process., 40, 194 (2015); https://doi.org/10.1016/j.mssp.2015.06.017
S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R.S. Ganesh, S. Ponnusamy, P. Raji and L.P. Purohit, Optik, 127, 10727 (2016); https://doi.org/10.1016/j.ijleo.2016.08.126
D.D. Joyal Mary, V. Baiju, R. Biju and R. Raveendran, Int. J. Adv. Res. Sci. Eng, 06, 284 (2017).
A. Khatri and P. Rana, Bull. Mater. Sci., 42, 141 (2019); https://doi.org/10.1007/s12034-019-1835-z
B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P. Liu and Q. Gu, Appl. Catal. B, 206, 242 (2017); https://doi.org/10.1016/j.apcatb.2017.01.029
L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu and H. Li, Appl. Surf. Sci., 283, 25 (2013); https://doi.org/10.1016/j.apsusc.2013.05.106
Z. Hu, J. Zhou, Y. Zhang, W. Liu, J. Zhou and W. Cai, Chem. Phys. Lett., 706, 208 (2018); https://doi.org/10.1016/j.cplett.2018.06.006
C. Ma, J. Zhou, H. Zhu, W. Yang, J. Liu, Y. Wang and Z. Zou, ACS Appl. Mater. Interfaces, 7, 14628 (2015); https://doi.org/10.1021/acsami.5b01356
Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv and G. Liu, Appl. Catal. B, 229, 96 (2018); https://doi.org/10.1016/j.apcatb.2018.02.011
H.L. Haile, T. Abi and K. Tesfahun, Afr. J. Pure Appl. Chem., 9, 211 (2015); https://doi.org/10.5897/AJPAC2015.0656
F.T. Johra and W.G. Jung, Appl. Catal. A Gen., 491, 52 (2015); https://doi.org/10.1016/j.apcata.2014.11.036
M. Fabian, E. Svab and K. Krezhov, J. Non-Cryst. Solids, 433, 6 (2016); https://doi.org/10.1016/j.jnoncrysol.2015.11.023
G.K. Upadhyay, J.K. Rajput, T.K. Pathak, P.K. Pal and L.P. Purohit, Appl. Surf. Sci., 509, 145326 (2020); https://doi.org/10.1016/j.apsusc.2020.145326
S. Sharma, R. Sharma and A.K. Sharma, Curr. Environ. Eng., 5, 221 (2018); https://doi.org/10.2174/2212717805666180801143324