Copyright (c) 2024 Dr.K.Ramesh Ramesh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Tectona grandis Leaves derived Activated Carbon for High-Performance Supercapacitor Application
Corresponding Author(s) : K. Ramesh
Asian Journal of Chemistry,
Vol. 36 No. 11 (2024): Vol 36 Issue 11, 2024
Abstract
In energy-based applications, biomass porous micro/nanostructures activated carbon materials are the significant candidates, because of their high specific surface area, superior electrical conductivity, affordability and environmental friendliness. In this work, the activated carbon was prepared from Tectona grandis leaves as a biomass, and thus activated by 25% K2CO3 solution. The prepared carbon was designated as TGLAC. Second carbon was prepared from TGLAC was doped with urea and named as N-doped TGLAC. The physico-chemical analytical methods were employed to access the phase structure, bonding nature and morphological properties of the freshly prepared activated carbon material. Three electrode systems were utilized to estimate the supercapacitor features in 1 M Na2SO4 electrolyte. The prepared activated carbon electrode provides a specific capacitance of 371 F g–1 at 1 A g–1 and a 62% rate capability at 5 A g–1. It retains 94% of its initial capacitance during the cyclic stability analysis at 5 A g–1 over 5,000 cycles. This study demonstrates that carbon based materials obtained from sustainable waste biomass can exhibit favourable electrochemical performance in energy applications, providing a clear and feasible synthetic approach and strategy for their utilization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.W. Richey, C. Tran, V. Kalra and Y.A. Elabd, J. Phys. Chem. C, 118, 21846 (2014); https://doi.org/10.1021/jp506903m
- Q. Geng, H. Wang, J. Wang, J. Hong, W. Sun, Y. Wu and Y. Wang, Small Methods, 6, 2200314 (2022); https://doi.org/10.1002/smtd.202200314
- Q. Chen, X. Tan, Y. Liu, S. Liu, M. Li, Y. Gu, P. Zhang, S. Ye, Z. Yang and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 8, 5773 (2020); https://doi.org/10.1039/C9TA11618D
- Z. Wang, D. Shen, C. Wu and S. Gu, Green Chem., 20, 5031 (2018); https://doi.org/10.1039/C8GC01748D
- Q. Wang, J. Yan and Z. Fan, Energy Environ. Sci., 9, 729 (2016); https://doi.org/10.1039/C5EE03109E
- V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady and R.B. Kaner, Adv. Mater., 30, 1704449 (2018); https://doi.org/10.1002/adma.201704449
- J. Wang, X. Zhang, Z. Li, Y. Ma and L. Ma, J. Power Sources, 451, 227794 (2020); https://doi.org/10.1016/j.jpowsour.2020.227794
- F. Abnisa and W.M.A. Wan Daud, Energy Convers. Manage., 87, 71 (2014); https://doi.org/10.1016/j.enconman.2014.07.007
- G. Emilsson, E. Röder, B. Malekian, K. Xiong, J. Manzi, F.-C. Tsai, N.-J. Cho, M. Bally and A. Dahlin, Front Chem., 7, 1 (2019); https://doi.org/10.3389/fchem.2019.00001
- H. Meskher, D. Ghernaout, A.K. Thakur, F.S. Jazi, Q.F. Alsalhy, S.S. Christopher, R. Sathyamurhty and R. Saidur, Mater. Today Commun., 38, 108517 (2024); https://doi.org/10.1016/j.mtcomm.2024.108517
- K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo and L. Liu, Electrochim. Acta, 166, 1 (2015); https://doi.org/10.1016/j.electacta.2015.03.048
- E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose and K.F. Chong, Electrochim. Acta, 192, 110 (2016); https://doi.org/10.1016/j.electacta.2016.01.140
- I.I.G. Inal, S.M. Holmes, A. Banford and Z. Aktas, Appl. Surf. Sci., 357, 696 (2015); https://doi.org/10.1016/j.apsusc.2015.09.067
- M. Rajesh, R. Manikandan, S. Park, B.C. Kim, W.J. Cho, K.H. Yu and C.J. Raj, Int. J. Energy Res., 44, 8591 (2020); https://doi.org/10.1002/er.5548
- X. Wang, S. Yun, W. Fang, C. Zhang, X. Liang, Z. Lei and Z. Liu, ACS Sustain. Chem. Eng., 6, 11397 (2018); https://doi.org/10.1021/acssuschemeng.8b01334
- K. Ojha, B. Kumar and A.K. Ganguli, J. Chem. Sci., 129, 397 (2017); https://doi.org/10.1007/s12039-017-1248-8
- M. Jalalah, S. Rudra, B. Aljafari, M. Irfan, S.S. Almasabi, T. Alsuwian, M.I. Khazi, A.K. Nayak and F.A. Harraz, Electrochim. Acta, 414, 140205 (2022); https://doi.org/10.1016/j.electacta.2022.140205
- P. Wang, Q. Wang, G. Zhang, H. Jiao, X. Deng and L. Liu, J. Solid State Electrochem., 20, 319 (2016); https://doi.org/10.1007/s10008-015-3042-1
- J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane and T.C. Maloney, ACS Omega, 4, 18108 (2019); https://doi.org/10.1021/acsomega.9b01977
- M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
- Z. Xu, T. Zhang, Z. Yuan, D. Zhang, Z. Sun, Y.X. Huang, W. Chen, D. Tian, H. Deng and Y. Zhou, RSC Adv., 8, 38081 (2018); https://doi.org/10.1039/C8RA06253F
- S.K. Shahcheragh, M.M. Bagheri Mohagheghi and A. Shirpay, SN Appl. Sci., 5, 313 (2023); https://doi.org/10.1007/s42452-023-05559-6
- T.A. Saleh and G.I. Danmaliki, J. Taiwan Inst. Chem. Eng., 60, 460 (2016); https://doi.org/10.1016/j.jtice.2015.11.008
- M. Baikousi, K. Dimos, A.B. Bourlinos, R. Zboøil, Y. Deligiannakis, I. Papadas and M.A. Karakassides, Appl. Surf. Sci., 258, 3703 (2012); https://doi.org/10.1016/j.apsusc.2011.12.010
- M. Veerapandian, N. Lévaray, M.H. Lee, S. Giasson and X.X. Zhu, ACS Appl. Mater. Interfaces, 7, 14552 (2015); https://doi.org/10.1021/acsami.5b00608
- A.G. Santos, G.O. da Rocha and J.B. de Andrade, Sci. Rep., 9, 1 (2019); https://doi.org/10.1038/s41598-018-37186-2
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., •••, 6 (2008).
- N. Zhao, S. Wu, C. He, C. Shi, E. Liu, X. Du and J. Li, Mater. Lett., 87, 77 (2012); https://doi.org/10.1016/j.matlet.2012.07.085
- B. Fang and L. Binder, J. Power Sources, 163, 616 (2006); https://doi.org/10.1016/j.jpowsour.2006.09.014
- Ö. Sahin, Y. Yardim, O. Baytar and C. Saka, Int. J. Hydrogen Energy, 45, 8843 (2020); https://doi.org/10.1016/j.ijhydene.2020.01.128
- E. Taer, M. Melisa, A. Agustino, R. Taslim, W. Sinta Mustika and A. Apriwandi, Energy Sources A Recovery Util. Environ. Effects, 00, 1 (2021); https://doi.org/10.1080/15567036.2021.1950871
- D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
- P. Merin, P. Jimmy Joy, M.N. Muralidharan, E. Veena Gopalan and A. Seema, Chem. Eng. Technol., 44, 844 (2021); https://doi.org/10.1002/ceat.202000450
- T. Manimekala, R. Sivasubramanian, S. Karthikeyan and G. Dharmalingam, J. Porous Mater., 30, 289 (2023); https://doi.org/10.1007/s10934-022-01338-7
References
F.W. Richey, C. Tran, V. Kalra and Y.A. Elabd, J. Phys. Chem. C, 118, 21846 (2014); https://doi.org/10.1021/jp506903m
Q. Geng, H. Wang, J. Wang, J. Hong, W. Sun, Y. Wu and Y. Wang, Small Methods, 6, 2200314 (2022); https://doi.org/10.1002/smtd.202200314
Q. Chen, X. Tan, Y. Liu, S. Liu, M. Li, Y. Gu, P. Zhang, S. Ye, Z. Yang and Y. Yang, J. Mater. Chem. A Mater. Energy Sustain., 8, 5773 (2020); https://doi.org/10.1039/C9TA11618D
Z. Wang, D. Shen, C. Wu and S. Gu, Green Chem., 20, 5031 (2018); https://doi.org/10.1039/C8GC01748D
Q. Wang, J. Yan and Z. Fan, Energy Environ. Sci., 9, 729 (2016); https://doi.org/10.1039/C5EE03109E
V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady and R.B. Kaner, Adv. Mater., 30, 1704449 (2018); https://doi.org/10.1002/adma.201704449
J. Wang, X. Zhang, Z. Li, Y. Ma and L. Ma, J. Power Sources, 451, 227794 (2020); https://doi.org/10.1016/j.jpowsour.2020.227794
F. Abnisa and W.M.A. Wan Daud, Energy Convers. Manage., 87, 71 (2014); https://doi.org/10.1016/j.enconman.2014.07.007
G. Emilsson, E. Röder, B. Malekian, K. Xiong, J. Manzi, F.-C. Tsai, N.-J. Cho, M. Bally and A. Dahlin, Front Chem., 7, 1 (2019); https://doi.org/10.3389/fchem.2019.00001
H. Meskher, D. Ghernaout, A.K. Thakur, F.S. Jazi, Q.F. Alsalhy, S.S. Christopher, R. Sathyamurhty and R. Saidur, Mater. Today Commun., 38, 108517 (2024); https://doi.org/10.1016/j.mtcomm.2024.108517
K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo and L. Liu, Electrochim. Acta, 166, 1 (2015); https://doi.org/10.1016/j.electacta.2015.03.048
E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose and K.F. Chong, Electrochim. Acta, 192, 110 (2016); https://doi.org/10.1016/j.electacta.2016.01.140
I.I.G. Inal, S.M. Holmes, A. Banford and Z. Aktas, Appl. Surf. Sci., 357, 696 (2015); https://doi.org/10.1016/j.apsusc.2015.09.067
M. Rajesh, R. Manikandan, S. Park, B.C. Kim, W.J. Cho, K.H. Yu and C.J. Raj, Int. J. Energy Res., 44, 8591 (2020); https://doi.org/10.1002/er.5548
X. Wang, S. Yun, W. Fang, C. Zhang, X. Liang, Z. Lei and Z. Liu, ACS Sustain. Chem. Eng., 6, 11397 (2018); https://doi.org/10.1021/acssuschemeng.8b01334
K. Ojha, B. Kumar and A.K. Ganguli, J. Chem. Sci., 129, 397 (2017); https://doi.org/10.1007/s12039-017-1248-8
M. Jalalah, S. Rudra, B. Aljafari, M. Irfan, S.S. Almasabi, T. Alsuwian, M.I. Khazi, A.K. Nayak and F.A. Harraz, Electrochim. Acta, 414, 140205 (2022); https://doi.org/10.1016/j.electacta.2022.140205
P. Wang, Q. Wang, G. Zhang, H. Jiao, X. Deng and L. Liu, J. Solid State Electrochem., 20, 319 (2016); https://doi.org/10.1007/s10008-015-3042-1
J. Phiri, J. Dou, T. Vuorinen, P.A.C. Gane and T.C. Maloney, ACS Omega, 4, 18108 (2019); https://doi.org/10.1021/acsomega.9b01977
M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
Z. Xu, T. Zhang, Z. Yuan, D. Zhang, Z. Sun, Y.X. Huang, W. Chen, D. Tian, H. Deng and Y. Zhou, RSC Adv., 8, 38081 (2018); https://doi.org/10.1039/C8RA06253F
S.K. Shahcheragh, M.M. Bagheri Mohagheghi and A. Shirpay, SN Appl. Sci., 5, 313 (2023); https://doi.org/10.1007/s42452-023-05559-6
T.A. Saleh and G.I. Danmaliki, J. Taiwan Inst. Chem. Eng., 60, 460 (2016); https://doi.org/10.1016/j.jtice.2015.11.008
M. Baikousi, K. Dimos, A.B. Bourlinos, R. Zboøil, Y. Deligiannakis, I. Papadas and M.A. Karakassides, Appl. Surf. Sci., 258, 3703 (2012); https://doi.org/10.1016/j.apsusc.2011.12.010
M. Veerapandian, N. Lévaray, M.H. Lee, S. Giasson and X.X. Zhu, ACS Appl. Mater. Interfaces, 7, 14552 (2015); https://doi.org/10.1021/acsami.5b00608
A.G. Santos, G.O. da Rocha and J.B. de Andrade, Sci. Rep., 9, 1 (2019); https://doi.org/10.1038/s41598-018-37186-2
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., •••, 6 (2008).
N. Zhao, S. Wu, C. He, C. Shi, E. Liu, X. Du and J. Li, Mater. Lett., 87, 77 (2012); https://doi.org/10.1016/j.matlet.2012.07.085
B. Fang and L. Binder, J. Power Sources, 163, 616 (2006); https://doi.org/10.1016/j.jpowsour.2006.09.014
Ö. Sahin, Y. Yardim, O. Baytar and C. Saka, Int. J. Hydrogen Energy, 45, 8843 (2020); https://doi.org/10.1016/j.ijhydene.2020.01.128
E. Taer, M. Melisa, A. Agustino, R. Taslim, W. Sinta Mustika and A. Apriwandi, Energy Sources A Recovery Util. Environ. Effects, 00, 1 (2021); https://doi.org/10.1080/15567036.2021.1950871
D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
P. Merin, P. Jimmy Joy, M.N. Muralidharan, E. Veena Gopalan and A. Seema, Chem. Eng. Technol., 44, 844 (2021); https://doi.org/10.1002/ceat.202000450
T. Manimekala, R. Sivasubramanian, S. Karthikeyan and G. Dharmalingam, J. Porous Mater., 30, 289 (2023); https://doi.org/10.1007/s10934-022-01338-7